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1 Introduction
The precautionary motive to save springs from the fact that extra resources improve a
consumer’s ability to buffer spending against shocks. A consumer who, in the absence
of shocks, would be impatient enough to plan to spend down their resources, will (when
shocks are present) experience an intensifying precautionary motive as their buffering
capacity shrinks. The result of this competition between impatience and ‘prudence’
(Kimball, 1990) has been described, starting with Deaton (1991), as ‘buffer stock saving,’
with a ‘target’ defined1 as the point where the precautionary motive to accumulate
becomes exactly strong enough to counter the impatience motive to decumulate.

The logic of buffer stock saving underpins key findings in heterogeneous-agent (HA)
macroeconomics. For example, it can explain why, during the Great Recession, middle-
class consumers cut spending more than the poor or the rich (Krueger, Mitman, and
Perri, 2016). Buffer stock saving also can explain why consumption growth tracks income
growth over much of the life cycle,2 rather than being determined solely by preferences
and interest rates as Irving Fisher (1930) had proposed.

Buffer stock saving models are neither a subset nor a superset of the closely-related
class of Bewley (1977) models (or, more generically, ‘income fluctuation’ problems
(Schechtman and Escudero, 1977a); we will use the terms ‘Bewley model’ and ‘income
fluctuation problem’ interchangeably). That is, not all Bewley models with fluctuating
income exhibit buffer stock saving, and not all models that exhibit buffer stock saving
satisfy the mathematical assumptions that guarantee boundedness of marginal marginal
utility imposed by Schectman or Bewley (and inherited by almost all of the subsequent
literature through to the recent contributions of Ma, Stachurski, and Toda (2020,
2022a)).

The purpose of this paper is to provide a comprehensive statement and explanation
of the conditions under which buffer stock saving arises in a class of problems broader in
important respects than Bewley models. Specifically, we consider the problem of an agent
who is subject to a Friedman-Muth(-Zeldes) income process incorporating permanent
shocks to noncapital income (Friedman, 1957; Muth, 1960; Zeldes, 1989) in addition
to the transitory shocks traditionally examined in the income fluctuation literature,3
and who does not face an ‘artificial’ borrowing constraint (a constraint that prohibits
borrowing even when the loan could certainly be repaid).

In the course of proving our main theoretical results, we define a variety of alter-
native measures of ‘patience’ – an intuitive term that nonetheless has had multiple
interpretations in the literature. Different measures of impatience guarantee two kinds
of theoretical results: The existence of a nondegenerate limiting consumption function,
and the existence of a buffer stock ‘target’.

1In Carroll (1992).
2Carroll (1997), Gourinchas and Parker (2002)
3It is our view that the principal reason much of the literature has incorporated extremely ‘persistent’ but not

completely permanent shocks is that the theoretical foundations for the case with permanent shocks have not previously
been available.

1



Patience Requirements for Nondegeneracy We will define the ‘limiting’ consump-
tion function as the limit of the sequence of consumption rules constructed by iterating
backward from a terminal period T , and we will say that this limiting function is
‘nondegenerate’ if it exists, is real-valued, and is strictly positive for every reachable
circumstance the consumer could be in.

When an artificial borrowing constraint is imposed and noncapital income is stationary
– it is subject to no permanent shocks and exhibits no long-term growth – our problem
coincides with a standard ‘income fluctuation problem.’ But our new proof methods
in this paper’s first main contribution, allows us also to solve models where permanent
income is unbounded above and below and there is no artificial constraint.

As noted by Szeidl (2013), the impatience condition (Rβ) < 1 that is commonly
imposed in Bewley models to guarantee existence and stability of the stochastic distri-
butions is in general not necessary nor sufficient for ensuring the existence of a non-
degenerate limiting solution.

For instance, in the unconstrained perfect foresight version of our problem, one type
of degeneracy arises if permanent income perpetually grows faster than the rate at which
it is discounted: With no limiting upper bound to the PDV of future income and no
borrowing constraint, there is no upper bound to limiting consumption. Imposition of
a ‘Finite Human Wealth’ condition (G < R), where the growth factor of permanent
income (G) is strictly dominated by the discount factor (R), is required to prevent this.
Another type of degeneracy arises if preferences fail the ‘return impatience’ condition:
(Rβ)1/γ/R < 1, where γ is the coefficient of relative risk aversion. Without return
impatience, the limiting consumption function is zero everywhere. Thus, both of these
conditions are necessary for the existence of a nondegenerate limiting consumption
function.

Intuition would suggest that, by activating the precautionary saving motive, intro-
duction of the Friedman-Muth stochastic income process might necessitate a stronger
degree of impatience to avoid degeneracy. In fact, we show that the required impatience
condition is weaker, for reasons that follow from the lack of an artificial borrowing con-
straint and the presence of a ‘natural’ borrowing constraint,4 (which has the additional
effect of eliminating the need to impose the Finite Human Wealth condition). We further
demonstrate that the artificial constraint emerges as the limit, as a certain parameter
goes to zero, of the natural constraint. This provides an intuitive conceptual bridge
between the two.

In the existing literature going all the way back to Fisher (1930),5 time preference ‘β’
and patience have often been treated as synonymous.

However, we show that, in the presence of nonstationary permanent income, the
corresponding generalized mathematical steps yield a ‘finite value of autarky’ condition
that incorporates both β and characteristics of the income growth process. The fact

4The ‘natural’ constraint arises as a consequence of the budget constraint and the CRRA utility function which
implies that the utility of consuming zero is negative infinity. Its implications were first explored by Zeldes (1989) in a life
cycle context. Carroll (1992) analyzed the infinite horizon case, and Aiyagari (1994) coined the term ‘natural borrowing
constraint.’

5Fisher (1930) in Ch. IV, Section 3 states "I shall treat the two terms (impatience and time preference) as
synonymous".
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that the generalized condition involves terms other than β undermines the temptation
to identify ‘patience’ solely with the pure time preference factor. We therefore propose
that henceforth the literature should deprecate use of the term ‘patience’ unadorned
with any adjective identifying precisely which kind of patience is under consideration.

One such kind of patience is absolute patience, (Rβ)1/γ, which is the rate at which
the consumer is willing to move consumption forward without any precautionary saving
motive (under perfect foresight). Importantly, we show that for a consumer to have
a non-degenerate value function in the limit as the planning horizon recedes, absolute
patience cannot exceed both the market return factor R and the expected income growth
factor G. (Growth impatience must hold if return impatience fails and vice-versa.) When
both growth impatience and return impatience fail, the limiting consumption function
is either c = 0 or c =∞.

Patience Requirements and the Existence of Buffer Stock Targets Once we have
established the existence of a non-degenerate solution, the second (and more important)
main result of the paper is to identify conditions under which buffer stock ‘targets’ exist,
for individual consumers or in the aggregate.

The appropriate definition of a buffer stock ‘target’ turns out to depend on whether we
are interested in the microeconomic behavior of individual consumers, or the aggregate
behavior of the entire population of consumers. The requirement for the existence of
an individual target is ‘strong growth impatience,’ (E[(Rβ)1/γ/G̃] < 1) which prevents
the ratio of a household’s market resources (m) to permanent income (p) (‘normalized
market resources’ m = m/p) from growing without bound. Specifically, strong growth
impatience guarantees that at some large-enough value m = ḿ it must be the case
that the expectation of next period’s m is less than this period’s: (if mt > ḿ, then
Et[mt+1] < mt). This turns out to guarantee that normalized market resources eventually
revert back toward a target.

A weaker requirement, ‘growth impatience,’ ensures the existence of an aggregate
buffer stock target even when individual target ratios are unbounded. Growth impatience
requires the ratio of absolute patience to the expected growth factor of permanent income
to be less than one: (Rβ)1/γ/G < 1.

As Harmenberg (2021a) points out, a stationary distribution of market resources,
weighted by permanent income still exists under growth impatience. The trick to
understanding how there can be an aggregate target even when there is no individual
target is to realize that one reason that m/p can grow is that individuals can have
negative shocks to p. But the people whose ratio grows because their p shrinks by
definition account for a smaller portion of the level of aggregate permanent income. That
is, even as their m rises they become smaller contributors to the aggregate economy. 6

Thus in the aggregate, even with a fixed interest rate that differs from the time
preference rate, a small open economy populated by buffer stock consumers has a bal-
anced growth path in which growth rates of consumption, income, and market resources

6The paper’s insights are instantiated in the Econ-ARK toolkit, whose buffer stock saving module flags parametric
choices under which a problem is degenerate or under which stable ratios of wealth to income may not exist.
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match the exogenous growth rate of aggregate permanent income (equivalent, here, to
productivity growth). In the terms of Schmitt-Grohé and Uribe (2003), buffer stock
saving is an appealing method of ‘closing’ a small open economy model, because it
requires no ad-hoc assumptions. Not even borrowing constraints.

Relationship to Literature Although the elements of buffer stock saving behavior were
informally articulated by Friedman (1957), the term was introduced to the literature by
Deaton (1991) to describe the behavior of liquidity-constrained impatient consumers with
transitory income shocks.7 Carroll (1992) showed (numerically) that buffer stock saving
could arise even in the absence of borrowing constraints, and defined the individual
buffer stock ‘target’ as the point where a measure of normalized resources is expected
to stay the same.

Traditional Bellman approaches to showing existence rely on assumptions that guaran-
tee the boundedness of utility and marginal utility (Stokey, Lucas, and Prescott, 1989).8
The results by Ma, Stachurski, and Toda (2020, 2022a) are the most general we are aware
of that tackle income fluctuation problems, and can be specialized to show existence in
a model one step away from our normalized model with a stochastic rate of return and
stochastic effective discount factor. The discrepant step is that they impose an artificial
constraint and positive minimum value of income; this bounds utility from below (it can
never be lower than the marginal utility of consumption) and thus cannot be applied
here.

Our approach to constructing the weighted-norm space of value functions uses results
on unbounded dynamic programming by (Boyd, 1990).9 Our approach differs from
previous approaches in its use of limiting marginal propensities to consume to construct
per-period bounds on the Bellman operator. Moreover, our patience restrictions are
grounded in intuitive economic ideas (rather than abstract mathematical assumptions)
that arise naturally in the presence of permanent income uncertainty and growth. To the
best of our knowledge, these economic mechanisms have not been explored elsewhere.

Our discussion of aggregate results builds on Szeidl (2013) and Harmenberg (2021a)
who give results on the existence and convergence of stationary wealth distributions
that apply to the model presented here. While their conditions for stationarity relate to

7Deaton (1991) also showed that impatient consumers facing only permanent shocks would end up remaining on the
borrowing constraint forever, an insight that informs the work of Kaplan, Violante, and Weidner (2014).

8Our CRRA utility function does not satisfy Bewley’s assumption that u(0) is well-defined, or that u′(0) is bounded
above. Our approach differs from that of Schechtman and Escudero (1977b) because they impose an artificial borrowing
constraint and positive minimum income. It differs from Deaton (1991) because he imposes liquidity constraints; we
accommodate separate transitory and permanent shocks; and our transitory shocks occasionally cause income to reach
zero. Papers by Scheinkman and Weiss (1986), Clarida (Clarida, 1987), and others Chamberlain and Wilson (2000) all
differ from ours for reasons resembling those articulated above.

Alvarez and Stokey (1998) relaxed boundedness of the utility function, but they address only the deterministic case;
Martins-da Rocha and Vailakis (2010)’s correction to Rincón-Zapatero and Rodríguez-Palmero (2003) only addresses the
deterministic case. Matkowski and Nowak (2011) assume a framework with compact action sets and real-valued utility
which cannot handle relative risk aversion greater than 1.

Two approaches do allow relative risk aversion greater than 1: A literature employing time iteration operators defined
by Euler equations (Deaton, 1991; Li and Stachurski, 2014; Ma, Stachurski, and Toda, 2020), and one that employs
transformations of the Bellman equation (Rincón-Zapatero, 2024), but in all of these cases an artificial borrowing constraint
is present (or its moral equivalent, as in Bewley).

9Alvarez and Stokey (1998) showed how the approach could be used to address the homogeneous case (of which
CRRA is an example) in a deterministic framework; later, Durán (2003) showed how to extend the Boyd (1990) approach
to the stochastic case. See also the exposition by Stachurski (2022), Ch 12.
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growth impatience and strong growth impatience, our objective is to establish existence
of stable buffer stock targets, which is relatively easily tested empirically, rather than
to establish stationarity of distributions, which is much harder to imagine testing with
empirical data.

2 Theoretical Foundations
This section formalizes the consumer income fluctuation problem and proves the exis-
tence of a limiting non-degenerate solution. In doing so, we also introduce our consumer
patience conditions and use them to derive the consumer’s MPCs. The MPCs are
formulae, for any period t earlier than the terminal period T , for the maximum and
minimum MPCs as wealth approaches zero and infinity. If the environment is that of
an infinite-horizon ‘income fluctuation problem,’ our formulae yield the limiting upper
and lower bounds of the limiting non-degenerate solution.

We first state the finite horizon problem and then define the limiting solution as
the limit of finite horizon solutions as the terminal period becomes arbitrarily distant.
This way, the economic intuition of limiting consumer behaviour can be directly linked
to consumer behaviour in life-cycle models (see Gourinchas and Parker (2002) for an
instance where buffer stock saving is discussed in the context of a life-cycle model).
Nonetheless for the class of problems we consider, a non-degenerate limiting solution,
if it exists, is mathematically equivalent (Bertsekas (2012), Ch. 1.) to a stationary
solution to an infinite stochastic sequence problem commonly used in the literature (for
example, Ma, Stachurski, and Toda (2020)).

2.1 Setup
We start by stating the consumer problem with permanent income growth in levels
and then normalize by permanent income. The normalized problem then becomes the
subject of our formal results in the paper.

Our time index t can take on values in {T, T − 1, T − 2, . . . }. We assume that our
consumer has a Constant Relative Risk Aversion (CRRA) per-period utility function,
u(c) = c1−γ

1−γ , where γ > 1. The term β is the (strictly positive) discount factor. In
each period t, the consumer faces independently and identically distributed (iid) income
shocks, with the permanent shock given by ψt ∈ R++ and the transitory shock by
ξξξt ∈ R+.10

In each t, the finite horizon value function for the problem in levels will be denoted
by vt, with vt : R2

++ → R. Value, vt(m t,p t), depends on two strictly positive state
variables: ‘market resources’ m t and permanent income p t. After the terminal period,

10Formally, we assume {ψt, ξξξt}Tt=−∞ is a sequence of iid random variables defined on a common
probability space (Ω,Σ,P). When used without the time subscript, ψ and ξξξ are the canonical random
variables with distributions P ◦ ψ−1

0 and P ◦ ξξξ−1
0 , respectively.
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we assume the consumer cannot die in debt:

cT ≤mT . (1)

Letting vT+1 = 0, it follows that the value function for the terminal period satisfies
vT = u(mT ). For t < T , the finite-horizon value functions are recursively defined by:

vt(m t,p t) : = max
0<ct≤mt

u(ct) + βEtvt+1(m t+1,p t+1), (m t,p t) ∈ R2
++ (PL)

where i) ct is the level of consumption at time t, ii) Et is the expectation operator over
the shocks ψt+1 and ξξξt+1, and iii) m t+1 is determined from this period’s m t and choice
of ct as follows:11

a t = m t − ct

k t+1 = a t

p t+1 = p t Gψt+1︸ ︷︷ ︸
:=G̃t+1

m t+1 = Rk t+1︸ ︷︷ ︸
:=bt+1

+p t+1ξξξt+1︸ ︷︷ ︸
:=ỹt+1

.

The consumer’s assets at the end of t, a t, translate one-for-one into capital k t+1 at
the beginning of the next period. In turn, k t+1 is augmented by a fixed interest factor R
to become the consumer’s financial (‘bank’) balances b t+1 = Rk t+1. ‘Market resources,’
m t+1, are the sum of financial wealth Rk t+1 and noncapital income y t+1 = p t+1ξξξt+1

(permanent noncapital income p t+1 multiplied by the transitory shock ξξξt+1). Permanent
noncapital income p t+1 is derived from p t by application of a growth factor G,12 modified
by the permanent income shock ψt+1,13 and the resulting idiosyncratic growth factor for
permanent income is written as G̃t+1.

Letting n denote the planning horizon, the finite-horizon problems furnish a
sequence of value functions {vT ,vT−1, . . . ,vT−n} and associated consumption

11For maximal clarity, we have separately described every step in the dynamic budget evolution.
The steps are broken down also so that the notation of the paper will correspond exactly to the variable
names in the toolkit, because it is required for solving life cycle problems.

12A time-varying G has straightforward consequences for the analysis below; this is an option allowed
for in the HARK toolkit.

13While much of the literature employs an income process that is persistent but not permanent,
evidence of the presence and large size of permanent (or very nearly permanenent) shocks has long been
observed in micro data. (Lillard and Weiss (1979), MaCurdy (1982); Abowd and Card (1989); Carroll
and Samwick (1997); Jappelli and Pistaferri 2000; et. seq.) Daly, Hryshko, and Manovskii (2016) show
that when measurement problems are handled correctly, administrative data yield serial correlation
coefficients 0.98− 1.00; and Hryshko and Manovskii (2020) suggests that survey data support the same
conclusion. Most recently Crawley, Holm, and Tretvoll (2022) use data from the Norwegian national
registry that encompass millions of observations over along time span, and argue that the parsimonious
specification with permanent shocks is preferable to one that allows a persistent shock with a serial
correlation coefficient very close to 1.
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functions {cT , cT−1, . . . , cT−n}. The limiting consumption function, denoted by
c(m ,p) = lim

n→∞
cT−n(m ,p), will be called a ‘non-degenerate limiting solution’ if neither

c = 0 everywhere (for all (m ,p)) nor c =∞ everywhere.
Before turning to the normalized problem, we present the income process and its

implications for the consumer problem. The following assumption defines the income
process.

Assumption I.1. (Friedman-Muth Income Process). For each t:

1. The permanent shock, ψt, satisfies E[ψt] = 1 and ψt ∈ [ψ, ψ] s.t. 0 < ψ ≤ 1 and
1 ≤ ψ <∞.

2. The transitory shock, ξξξt, satisfies:

ξξξt =

{
0 with probability ℘ > 0

θt/(1− ℘) with probability (1− ℘), (2)

for iid random variable θt, with E[θt] = 1 and θt ∈ [θ, θ̄] s.t. θ > 0 and θ ≤ 1 ≤
θ <∞.

Following Zeldes (1989), the income process incorporates a small probability ℘ that
income will be zero (a ‘zero-income event’). At date T − 1, the (strictly positive)
probability q of zero income in period T will prevent the consumer from spending all
resources, because saving nothing would mean arriving in the following period with zero
bank balances and thus facing the possibility of being required to consume 0, which would
yield utility of −∞. This logic holds recursively from T − 1 back, so the consumer will
never spend everything, giving rise to what Aiyagari (1994) dubbed a ‘natural borrowing
constraint.’14 (Thus, the upper-bound constraint on consumption in the problem (PL)
will not bind.)

The model looks more special than it is. In particular, a positive probability of zero-
income events may seem objectionable (despite empirical support). However, a nonzero
minimum value of ξξξ (motivated, say, by the existence of unemployment insurance) could
be handled by capitalizing the present discounted value (PDV) of minimum income into
current market assets,15 and transforming that model back into this one. And no key
results would change if the transitory shocks were persistent but mean-reverting (instead
of iid). Also, the assumption of a positive point mass for the worst realization of the
transitory shock is inessential, but simplifies the proofs and is a powerful aid to intuition.

2.1.1 Normalized Problem

Let nonbold variables be the boldface counterpart normalized by p t, allowing us to
reduce the number of states from two (m and p) to one (m = m/p). Now, in a one-
time deviation from the notational convention established in the last sentence, define

14We specify zero as the lowest-possible-income event without loss of generality (Aiyagari, 1994).
15So long as unemployment benefits are proportional to pt; see the discussion in Section 2.1.1.
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nonbold ‘normalized value’ not as v t/p t but as vt = v t/p
1−γ
t , because this allows us to

write nonbold vt, with vt : R++ → R, to denote the ‘normalized value function’:

vt(mt) = max
0<ct<mt

u(ct) + βEt[G̃1−γt+1 vt+1(mt+1)], mt ∈ R++

s.t.
at = mt − ct

bt+1 = atR/G̃t+1 = R̃t+1at

mt+1 = bt+1 + ξξξt+1,

(PN)

where R̃t+1 : = (R/G̃t+1) is a ‘permanent-income-growth-normalized’ return factor.16
(Appendix A.1 explains how the solution to the original problem in levels can be
recovered from the normalized problem.)

The time t normalized consumption policy function for the finite-horizon problem, ct,
is defined by:

ct(mt) : = argmax
0<ct<mt

u(ct) + βEt[G̃1−γt+1 vt+1(mt+1)]. (3)

The normalized problem’s first order condition becomes:

c−γt = RβEt[G̃−γt+1c
−γ
t+1]. (4)

Since our main results pertain to the normalized problem, we define the limiting non-
degenerate solution to the normalized problem formally.

Definition 1. (Non-degenerate Limiting Solution) PN has a non-degenerate limiting
solution if there exists c, with c : R++ → R++, and v, with v : R++ → R, such that:

c(m) = lim
n→∞

cT−n(m), v(m) = lim
n→∞

vT−n(m), m ∈ R++.

We use T to denote the stationary Bellman operator for the normalized problem. To
define T, let R̃ : = R/G̃ and let T denote the mapping vt+1 7→ vt given by Problem PN :

Tvt+1(m) = max
c∈(0,m)

{
u(c) + βEG̃1−γvt+1(R̃(m− c) + ξξξ)

}
, m ∈ R++. (5)

The mapping m 7→ (0,m) defines the feasibility correspondence. To define T, we
excluded the boundary of the feasible values that consumption can take (0 and m)
to ensure the maximand above is real-valued for all feasible values of consumption. It
is straightforward to show (using the Bellman Principle of Optimality) that a finite
valued solution, v, to the functional equation Tv = v defines a limiting non-degenerate
solution. However, because the feasibility correspondence does not include the boundary
of feasible consumption, existing dynamic programming arguments cannot be used to
show that such a solution (a fixed point to T) exists.

16We omit k from this transition because our assumption that k t+1 = a t could lead to confusion
about whether do denote kt+1 = at or kt+1 = at/G̃t+1.
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2.1.2 Dynamic Programming Challenges

Standard dynamic programming (Stachurski, 2022) works by showing that T is a well-
defined contraction map on a Banach space, which would allow us to conclude that the
sequence of value functions given by Problem PN converges to a fixed point of T, a
non-degenerate solution. At first, we must contend with the fact that both u and v
are unbounded below. We resolve unboundedness by constructing a weighted-norm (see
below). Setting aside unboundedness, the natural liquidity constraint introduces a more
pernicious challenge related to continuity: T will not a be well defined self-map on a
vector space of continuous functions. In particular, we cannot assert T maps continuous
functions to continuous functions since the feasiblility correspondence m 7→ (0,m) is not
compact-valued.

Remark 1. Since the correspondence m 7→ (0,m) is not compact valued, the conditions
of Berge’s Maximum Theorem (Lemma 1, Jaśkiewicz and Nowak (2011)) fail and Tf
may not be continuous for continuous f.

If we reintroduce the boundary points 0 and m to the feasibility correspondence, the
operator T will be able to map upper semicontinuous functions to upper semicontinuous
functions (Lemma 1, Jaśkiewicz and Nowak (2011)). However, v must now be defined
on R+ and take on values in R+ ∪ {−∞} and spaces of such functions will not be a
vector space. The approach taken by Ma, Stachurski, and Toda (2022b) is to impose an
artificial liquidity constraint, which yields a real-valued continuation value, even if c = m,
and forces the value function to be bounded below as a function of end-of-period assets.
This allows Ma, Stachurski, and Toda (2022b) to define a functional operator operator
within which the feasibiltiy correspondence is the compact interval [0,m]. Without an
artificial constraint, no such strategy is possible.17

A related approach, which uses Euler operators is used by Ma, Stachurski, and Toda
(2020). While Ma, Stachurski, and Toda (2020) also assume an artificial liquidity
constraint to bound the marginal utility of consumption, it is useful to consider how
the structure of our model relates to theirs once the artificial liquidity constraint is
imposed.

Remark 2. If ℘ = 0, (PN) becomes a special case of Ma, Stachurski, and Toda (2020),
with R̃t+1 = R/G̃t+1 corresponding to the stochastic rate of return on capital and βG̃1−γt+1

corresponding to the stochastic discount factor.

Notwithstanding Remark 2, there are important economic consequences relating con-
sumer patience to buffer stock saving due to the fact that in our problem R̃t+1 = R/G̃t+1

17The challenge of continuity and compactness remains unresolved in a general setting (Rincón-
Zapatero, 2024). Relevant results include Feinberg, Kasyanov, and Zadoianchuk (2012), who generalize
the requirement of continuity of feasibility correspondences to K-Inf-Compactness of the Bellman
operator, yielding a mapping from semi-continuous to semi-continuous functions. Shanker (2017)
introduces a generalization, mild-Sup-compactness, which can be verified in the weak topology generated
on the infinite dimensional product space of feasible random variables controlled by the consumers. Our
approach, by contrast, has the advantage that it can be used to verify existence using more standard
tools.
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is tightly tied to the ‘normalized stochastic discount factor,’ βG̃1−γt+1 ; these will become
apparent as we proceed.

2.2 Consumer Patience Conditions
In order to have a central reference point for them, we now collect conditions relating
consumer discounting and patience to the rate of return and income growth that under-
pin results in the remainder of the paper. Assumptions L.1 - L.3 (finite value of autarky,
return impatience and weak return impatience) will be used to prove the existence of
limiting solutions in Section 2.4, and Assumptions S.1 - S.2 (growth impatience and
strong growth impatience) are required for existence of alternative definitions of a stable
target buffer stock in Section 3.

We start by generalizing the standard β < 1 condition to our setting with permanent
income growth and uncertainty.18 The updated condition requires that the expected net
discounted value of utility from consumption is finite under our definition of ‘autarky’
– where consumption is always equal to permanent income. A finite value of autarky
helps guarantee that as the horizon extends, discounted value remains finite along any
consumption path the consumer might choose. (See Appendix A).

Assumption L.1. (Finite Value of Autarky). 0 < βG1−γE(ψ1−γ) < 1.

We now turn to consumer patience and start with ‘absolute (im)patience.’ We will say
that an unconstrained perfect foresight consumer exhibits absolute impatience if they
optimally choose to spend so much today that their consumption must decline in the
future. The growth factor for consumption implied by the Euler equation of a perfect
foresight model is ct+1/ct = (Rβ)1/γ,19 which motivates our definition of an ‘absolute
patience factor’ whose centrality (to everything that is to come later) justifies assigning
to it a special symbol; we have settled on the archaic letter ‘thorn’:

ÞÞÞ : = (Rβ)1/γ. (6)

We will say that (in the perfect foresight problem) ‘an absolutely impatient’ consumer
is one for whom ÞÞÞ < 1; that is an absolutely impatient consumer prefers to consume
more today than tomorrow (and vice versa for an ‘absolutely patient’ consumer, whose
consumption will grow over time):

Assumption L.2. (Absolute Impatience). ÞÞÞ < 1.

A consumer who is absolutely impatient, ÞÞÞ < 1, satisfies the standard impatience
condition commonly used in the income fluctuation literature, βR < 1, which guarantees
the existence of a stable asset distribution when there is no permanent income growth.
However, as pointed out by Szeidl (2013) and Ma, Stachurski, and Toda (2022a), βR < 1
is not necessary for an infinite-horizon solution.

18In light of Remark 2, Ma, Stachurski, and Toda (2020) Assumption 2.1 is a generalization of this
discount condition, albeit in a context with artificial liquidity constraints.

19See (12) below.
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Recall now our earlier requirement that the limiting consumption function c(m) in our
model must be ‘sensible.’ We will show below that for the perfect foresight unconstrained
problem this requires

Assumption L.3. (Return Impatience). ÞÞÞ/R < 1.

Return impatience can be best understood as the tension between the income effect
of capital income and the substitution effect. As we show below in Section 2.3, in the
perfect foresight model, it is straightforward to derive the MPC out of overall (human
plus nonhuman) wealth that would result in next period’s wealth being identical to the
current period’s wealth. The answer turns out to be an MPC (‘κ’) of κ = (1 − ÞÞÞ/R).
The interesting point here is that κ depends both on our absolute patience factor ÞÞÞ and
on the return factor. This is the manifestation in this context of the interaction of the
income effect (higher wealth yields higher interest income if R > 1) and the substitution
effect (which we have already captured with ÞÞÞ).

Next, consider the weaker condition of a consumer whose absolute patience factor
is suitably adjusted to take account of the probability of zero income is less than the
market return.

Assumption L.4. (Weak Return Impatience).
(℘Rβ)1/γ

R︸ ︷︷ ︸
=℘1/γÞÞÞ

R

< 1.

This condition is ‘weak’ (relative to the plain return impatience) because the proba-
bility of the zero income events ℘ is strictly less than 1. The role of ℘ in this equation is
related to the fact that a consumer with zero end-of-period assets today has a probability
℘ of having no income and no assets to finance consumption (and mt+1 = 0 would yield
negative infinite utility). In the case with no artificial constraint, our main results below,
in Section 2.4, show weak return impatience and finite value of autarky are sufficient to
guarantee a sensible (non-degenerate) solution.

Weak return impatience cannot be relaxed further without an artificial liquidity con-
straint. Even though ℘1/γÞÞÞ/R→ 0 as ℘→ 0 the weak return impatience condition does
not approach irrelevance as the possibility of the zero income event approaches zero.
Instead, we show below in Section 2.4.3 that the limiting consumption function with a
natural constraint approaches the solution to a model with an artificial constraint.

Now that we have finished discussing the requirements for a non-degenerate solution,
we turn to assumptions required for stability.

We will call the ratio of the ÞÞÞ to the expected growth factor for permanent income
G = E[Gψ]) the growth patience factor:

ÞÞÞ/G : = ÞÞÞ/G (7)

as exhibiting ‘growth impatience:’
We speak of a consumer whose absolute patience factor is less than the expected

growth factor for their permanent income G = E[Gψ]) as exhibiting ‘growth impatience:’
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Assumption S.1. (Growth Impatience). ÞÞÞ/G < 1.

A final useful definition is ‘strong growth impatience’

E[ÞÞÞ/G̃] < 1 (8)

which holds for a consumer for whom the expectation of the ratio of the absolute
patience factor to the (stochastic) growth factor of permanent income is less than one,

Assumption S.2. (Strong Growth Impatience). E
[

ÞÞÞ
Gψ

]
= ÞÞÞ/GE[ψ−1] < 1.

(The difference between growth impatience and strong growth impatience is that the
first is the ratio of an expectation to an expectation, while the latter is the expectation
of the ratio. With non-degenerate mean-one stochastic shocks to permanent income, the
expectation of the ratio is strictly larger than the ratio of the expectations).

Since γ > 1, note that strong growth impatience is weaker than the impatience
condition βG̃1−γt+1 R̃ < 1 used by Ma, Stachurski, and Toda (2020) to guarantee stability.
Moreover, while neither growth impatience nor return impatience will by themselves be
required for the existence of a limiting solution, the finite value of autarky condition
stops individuals from becoming both growth and return patient.

Claim 1. If growth impatience fails (ÞÞÞ/G ≥ 1) and return impatience fails (ÞÞÞ/R ≥ 1),
then finite value of autarky fails (βG1−γE(ψ1−γ) ≥ 1).

Proof. Since ÞÞÞ/R > 1, ÞÞÞ/R satisfies:

ÞÞÞ/R =
(Rβ)

1
γ

R
≥ 1. (9)

Multiplying both sides by RG1−γ gives us:

βG1−γR 1
γ β

1−γ
γ ≥ RG1−γ ⇒ βG1−γ ≥

(ÞÞÞ
G

)γ−1

. (10)

Finally, since γ > 1, applying ÞÞÞ/G ≥ 1 gives us the result.

We discuss further intuition for the consumer patience conditions below when they
are used in the main results.

The relationship between the conditions and their implications for consumption be-
haviour will also be be discussed in detail in Section 5.

2.3 Perfect Foresight Benchmarks
To understand the economic implications of the patience conditions, we begin with the
perfect foresight case.

Below, when we say we assume perfect foresight, what we mean mathematically is:

12



Assumption I.2. (Perfect Foresight Income Process). ℘ = 0 and θ = θ = θ̄ = ψ =

ψ = 1

Throughout this sub-section, we assume Assumption I.2 remains in force.
Under perfect foresight, finite value of autarky reduces to a ‘perfect foresight finite

value of autarky’ condition:
βG1−γ < 1. (11)

2.3.1 Perfect Foresight without Liquidity Constraints

Consider the familiar analytical solution to the perfect foresight model without liquidity
constraints. In this case, the consumption Euler Equation always holds as an equality;
with u′(c) = c−γ and u′(ct) = Rβu′(ct+1), we have:

ct+1/ct = (Rβ)1/γ. (12)

Recalling R = R/G, ‘human wealth’, is the present discounted value of income:

h t = p t + R−1p t + R−2p t + · · ·+ Rt−Tp t

=

(
1− R−(T−t+1)

1− R−1

)

︸ ︷︷ ︸
=: ht

p t.

For human wealth to have finite value, we must have:

Assumption I.3. (Finite Human Wealth).

R−1 = G/R < 1. (13)

If R̃−1 is less than one, human wealth will be finite in the limit as T → ∞ because
(noncapital) income growth is smaller than the interest rate at which that income is
being discounted.

Under these conditions we can define a normalized finite-horizon perfect foresight
consumption function (see Appendix D.1 for details) as follows:

c̄T−n(mT−n) = (

=: bT−n︷ ︸︸ ︷
mT−n − 1+hT−n)κt−n

(14)

where κt is the marginal propensity to consume (MPC) and satisfies:

κ−1
T−n = 1 + (ÞÞÞ/R)κ−1

T−n+1. (15)

Let κ = lim
n→∞

κT−n. For κ to be strictly positive, we must impose return impatience.
The limiting consumption function then becomes:

c̄(m) = (m+ h− 1)κ, (16)
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where, under return impatience, the limiting MPC becomes:

κ : = 1−ÞÞÞ/R. (17)

In order to rule out the degenerate limiting solution in which c̄(m) =∞, we also require
(in the limit as the horizon extends to infinity) that human wealth remain bounded
(that is, we require ‘finite human wealth’). Thus, while return impatience prevents a
consumer from saving everything in the limit, ‘finite limiting human wealth’ prevents
infinite borrowing (against infinite human wealth) in the limit.

The following two results consider the normalized problem without liquidity con-
straints and with perfect foresight income (Assumption I.2).

Proposition 1. A non-degenerate limiting solution exists if and only if finite limiting
human wealth (R−1 < 1) and return impatience (Assumption L.3) hold.

Proof. See Appendix D.1 for the proof.

Claim 2. Assume finite human wealth (R−1 < 1). If growth impatience (Assumption
S.1) holds, then finite value of autarky (Assumption L.1) holds. If finite value of autarky
(Assumption L.1) holds, then return impatience (Assumption L.3) holds.

Proof. See Appendix A.2 for the proof.

The claim implies that if we impose finite limiting human wealth, then growth impa-
tience is sufficient for nondegeneracy since finite value of autarky and return impatience
follow. However, there are circumstances under which return impatience and finite
limiting human wealth can hold while the finite value of autarky fails. For example, if
G = 0, the problem is a standard ‘cake-eating’ problem with a non-degenerate solution
under return impatience.

2.3.2 Perfect Foresight with Liquidity Constraints

Our ultimate interest is in the unconstrained problem with uncertainty. Here, we show
that the perfect foresight constrained solution defines a useful limit for the unconstrained
problem with uncertainty.

Consider that if a liquidity constraint requiring at ≥ 0 binds at any mt, it must bind
at the lowest possible level of mt, mt = 1, defined by the lower bound of having arrived
into the period with bt = 0 (if the constraint were binding at any higher mt, it would
certainly be binding here, because u′′ < 0 and c′ > 0). At mt = 1 the constraint binds
if the marginal utility from spending all of today’s resources ct = mt = 1, exceeds the
marginal utility from doing the same thing next period, ct+1 = 1; that is, if such choices
would violate the Euler equation, Equation (4), yielding

1−γ > RβG−γ1−γ, (18)

which is just a restatement of growth impatience. So, the constraint is relevant if and
only if growth impatience holds.
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For the following result, consider the normalized perfect foresight problem with a
liquidity constraint (that is, assume ct ≤ mt for each t.)

Proposition 2. If return impatience (Assumption L.3) holds, then a non-degenerate
solution exists. Moreover, if return impatience does not hold, then a non-degenerate
solution exists if and only if growth impatience (Assumption S.1) holds.

The proof for the result follows from the discussion in Section 5.1.1, which outlines
the cases under which perfect foresight liquidity constraint solutions are non-degenerate.

Importantly, if return impatience fails (R ≤ ÞÞÞ) and growth impatience holds (ÞÞÞ < G),
then finite human wealth also fails (R ≤ G). Despite the unboundedness of human
wealth as the horizon extends arbitrarily, for any finite horizon the relevant liquidity
constraint prevents borrowing. Similarly, when uncertainty is present, the natural
borrowing constraint plays an analogous role in permitting a finite limiting solution
with unbounded limiting human wealth – we discuss the various parametric cases in
Section 5.

2.4 Main Results for Problem with Uncertainty
We are now ready to return to our primary interest, the model with permanent and
transitory income shocks. Throughout this section, we assume the Friedman-Muth
income process (Assumption I.1 holds) and examine the normalized problem, Problem
PN .

2.4.1 Limiting MPCs

We first establish results regarding the shape of the consumption function.20

Proposition 3. For each t, ct is twice continuously differentiable, increasing and strictly
concave.

Proof. See Appendix A.3 for the proof.

Next, we note that the ratio of optimal consumption to market resources (c/m) is
bounded by the minimal and maximal marginal propensities to consume (MPCs). Recall
that the MPCs answer the question ‘if the consumer had an extra unit of resources, how
much more spending would occur?’, The minimal and maximal MPCs are the limits of
the MPC as m→∞ and m→ 0, which we denote by κt and κt respectively. Since the
consumer spends everything in the terminal period, κT = 1 and κT = 1. Furthermore,
Proposition 3 will imply:21

κtmt ≤ ct(mt) ≤ κtmt. (19)

We define:
κ : = max{0, 1−ÞÞÞ/R}, (20)

20Carroll and Kimball (1996) proved concavity but not continuous differentiability.
21Note c′t is positive, bounded above by 1 and decreasing, then apply L’Hôpital’s Rule.
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κ : = 1− ℘1/γÞÞÞ/R, (21)

as the ‘limiting minimal and maximal MPCs’. The following result verifies that the
consumption share is bounded each period by the minimal and maximal MPCs, that
the consumption function is asymptotically linear and that the MPCs converge to the
limiting MPCs as the terminal period recedes.22

Lemma 1. (Limiting MPCs). If weak return impatience (Assumption L.4) holds, then:

(i) For each n:

κ−1
T−n = 1 + (ÞÞÞ/R)κ−1

T−n+1, κ−1
T−n = 1 +

(
℘1/γÞÞÞ/R

)
κ−1
T−n+1. (22)

(ii) We have lim
n→∞

κT−n = κ > 0. Moreover, if return impatience (Assumption L.3)
holds, then lim

n→∞
κT−n = κ = 1−ÞÞÞ/R > 0.

Proof. See Appendix A.3 for the proof.

The MPC bound as market resources approach infinity is easy to understand. Recall
that c̄ from the perfect foresight case will be an upper bound in the problem with
uncertainty; analogously, κ becomes the MPC’s lower bound. As the proportion of
consumption that will be financed out of human wealth approaches zero, the proportional
difference between the solution to the model with uncertainty and the perfect foresight
model shrinks to zero.

To understand the maximal limiting MPC, the essence of the argument is that as
market resources approach zero, the overriding consideration that limits consumption is
the (recursive) fear of the zero-income events — this is why the probability of the zero
income event ℘ appears in the expression for the maximal MPC. Weak return impatience
is too weak to guarantee a lower bound on the share of consumption to market resources;
it merely prevents the upper bound on the share of consumption to market resources from
approaching zero. Weak return impatience thereby prevents a situation where everyone
consumes an arbitrarily small share of current market resources as the terminal period
recedes. This insight plays a key role in the proof for the existence of a non-degenerate
solution in what follows.

2.4.2 Existence of Limiting Non-degenerate Solution

Let C(R++,R) be the space of continuous functions from R++ to R. To address the
challenges posed by unbounded state-spaces, Boyd (1990) provided a weighted contrac-
tion mapping theorem. Our strategy is to use this approach to first show that while the
stationary operator T may be undefined on a suitable Banach space (recall Remark 1),
operators defining each period’s problem (which we define below) will be contractions on

22Benhabib, Bisin, and Zhu (2015) show that the consumption function becomes linear as wealth
approaches infinity in a model with capital income risk and liquidity constraints; Ma and Toda (2020)
show that these results generalize to the limits derived here if capital income is added to the model.
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a space of continuous functions with a finite weighted norm. We then show the sequence
of finite horizon value functions given by Problem (PN) generates a Cauchy sequence;
since the weighted norm space is complete, the sequence of value functions converges to
a non-degenerate solution in C(R++,R).

Definition 2. Fix f such that f ∈ C(R++,R) and let 𭟋 be a function such that 𭟋 ∈
C(R++,R) and 𭟋 > 0. The function f will be 𭟋-bounded if the 𭟋-norm of f, given by

∥f∥𭟋 = sup
s∈R++

[ |f(s)|
𭟋(s)

]
, (23)

is finite. We will call C𭟋(R++,R) the subspace of functions in C(R++,R) that are 𭟋-
bounded.

We define the weighting function as

𭟋(x) = ζ + x1−γ, (24)

where ζ ∈ R++ is a constant derived from the model primitives and the upper and lower
bound on the consumption share (see Claim 5 in Appendix A.4 for the parametrization
of ζ).

Next, for any lower bound ν and upper-bound ν on the share of consumption to market
resources, define the ‘MPC bounded Bellman operator’ Tν,ν , with Tν,ν : C𭟋 (R++,R)→
C𭟋 (R++,R), as:

Tν,νf(m)

= max
c∈[νm,νm]

{
u(c) + βEG̃1−γf(R̃(m− c) + ξξξ)

}
, m ∈ R++, f ∈ C𭟋 (R++,R) . (25)

The value functions defined by Problem (PN) will satisfy vt = Tκt,κtvt+1 for each
period t, since consumption shares are bounded by the minimal and maximal MPCs
(Lemma 1 and Equation (19)). We now show the operator Tν,ν is a contraction on
C𭟋 (R++,R) for a suitably narrow interval [ν, ν].

Theorem 1. (Contraction Mapping Under Consumption Bounds). If weak return im-
patience (Assumption L.4) and finite value of autarky (Assumption L.1) hold, then there
exists k and α ∈ (0, 1) such that for all [ν, ν] with κT−k ≥ ν > ν > 0, Tν,ν is a contraction
with modulus α.

Proof. See Appendix A.4 for the proof.

The theorem says eventually the maximal MPCs will be small enough such that the
Bellman operators generating the sequence of finite horizon value functions given by
(PN) are contraction maps.

We can now relate the sequence of contraction maps to the limiting solution defined
in Section 2.1.1.
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Theorem 2. (Existence of Non-degenerate Solution). If weak return impatience (As-
sumption L.4) and finite value of autarky (Assumption L.1) hold, then:

(i) There exists k ∈ N such that a) for all n > k and ν with 0 < ν < κT−n, Tν,κT−n

is a contraction with modulus α < 1 and b) the sequence {vT−n}∞n=0 converges
point-wise to v ∈ C𭟋(R++,R).

(ii) The function v is a fixed point of T and there exists a measurable policy function,
c, such that c : R++ → R and:

Tv(m) = u(c(m)) + βEG̃1−γv(R̃(m− c(m)) + ξξξ), m ∈ R++. (26)

(iii) The sequence {cT−n}∞n=0 converges point-wise to c and c and v are a limiting non-
degenerate solution.

Proof. Item (i.)(a.) follows from Theorem 1, since 0 < ν < κT−n and for each t,
κT−n ≤ κT−k by Lemma 1. We now prove Item (i.)(b.), that {vT−n}∞n=0 converges point-
wise to a limiting non-degenerate solution v. In the proof, to streamline the notation,
we define tn : = T − n. Now, for all n > k + 2, vtn = Tκtn ,κtnvtn−1 holds by definition of
Problem (PN). Moreover, since κtn−1 ≥ κtn by Lemma 1, we have:

vtn = Tκtn ,κtn−1vtn−1 ,

and since κtn ≤ κtn−1
, we have:

vtn−1 = Tκtn−1
,κtn−1vn−2

= Tκtn ,κtn−1vtn−2 .
(27)

Next, take the 𭟋-norm distance between vtn and vtn−1 , and note Tκtn ,κtn−1 is a
contraction. As such, the sequence of finite horizon value functions satisfy:

∥vtn − vtn−1∥𭟋 = ∥Tκtn ,κtn−1vtn−1 − Tκtn ,κtn−1vtn−2∥𭟋 ≤ α∥vtn−1 − vtn−2∥𭟋.

As such, ∥vtn − vtn−1∥𭟋 ≤ α∥vtn−1 − vtn−2∥𭟋; because n is arbitrary and α holds for all
n by Theorem 1, this is a sufficient condition for {vT−n}∞n=k+2 to be a Cauchy sequence.

Since C𭟋 (R++,R) is a complete metric space, and vtn−2 ∈ C𭟋 (R++,R) for each n, vtn
converges to v, with v ∈ C𭟋 (R++,R). The proof for Item (i) and Item (ii) is continued
in Appendix A.4.)

The proof above shows that the sequence of value functions produced by the iteration
of the per-period Bellman operators TκT−n,κT−n will be a Cauchy sequence converging
to the limiting solution. Due to weak return impatience, the upper bound on the per-
period consumption converges to a strictly positive share of market resources, preventing
consumption from converging to zero.

Remark 3. Under return impatience, κT−n ≥ κ > 0 for all n, and thus for k ∈ N
large enough, Tκ,κT−k will be a stationary contraction map and we will have vT−n =
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Tκ,κT−kvT−n+1 for all n > k. However, without return impatience, κ = 0 and T0,κT−k

will not be a well-defined operator from C𭟋 (R++,R) to C𭟋 (R++,R), even for k large
enough (recall Section 2.1.2).

Finite value of autarky is the second assumption required to show existence of limiting
solutions and guarantees the value is finite (in levels) for a consumer who spent exactly
their permanent income every period (see Section 5.2). The intuition for the finite value
of autarky condition is that, with an infinite-horizon, with any strictly positive initial
amount of bank balances b0, in the limit your value can always be made greater than you
would get by consuming exactly the sustainable amount (say, by consuming (r/R)b0 − ϵ
for some arbitrarily small ϵ > 0).

Remark 4. Since κm ≥ cT−n(m) ≥ κm and cT−n converges point-wise to c, κm ≥
c(m) ≥ κm. Moreover, since c satisfies Equation (26) and v ∈ C𭟋 (R++,R), c(m) > 0
for m > 0.

Finally, we verify that the converged non-degenerate consumption functions satisfies
the same marginal propensities to consume the per-period consumption functions.

Lemma 2. If weak return impatience (Assumption L.4) holds, then lim
m→∞

c(m)/m = κm

and lim
m→0

c(m)/m = κm.

Proof. See Appendix A for the proof.

2.4.3 The Liquidity Constrained Solution as a Limit

Recall the common assumption (Deaton, 1991; Aiyagari, 1994; Li and Stachurski, 2014;
Ma, Stachurski, and Toda, 2020) of a strictly positive minimum value of income and
a non-trivial artificial liquidity constraint, namely at ≥ 0. We will refer to the set-up
from Section 2.1, with Assumption 2 modified so ℘ = 0 as the “liquidity constrained
problem.” Let ct(•;℘) be the consumption function for a problem where Assumption
I.1 holds for a given fixed ℘, with ℘ > 0. Moreover, let c̀t be the limiting consumption
function for the liquidity constrained problem (note that the liquidity constraint ct ≤ mt,
or at ≥ 0, becomes relevant only when ℘ = 0). The discussion in Appendix A.6 shows
how an finite-horizon solution to the liquidity constrained problem, c̀t , is the limit of
the problems as the probability ℘ of the zero-income event approaches zero.

Intuitively, if we impose the artificial constraint without changing ℘ and maintain
℘ > 0, it would not affect behavior. This is because the possibility of earning zero income
over the remaining horizon already prevents the consumer from ending the period with
zero assets. For precautionary reasons, the consumer will save something. However,
the extent to which the consumer feels the need to make this precautionary provision
depends on the probability that it will turn out to matter. As ℘→ 0, the precautionary
saving induced by the zero-income events approaches zero, and “zero” is the amount of
precautionary saving that would be induced by a zero-probability event by the impatient
liquidity constrained consumer. See Appendix A.6 for the formal proof.
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3 Individual Buffer Stock Stability
In this section we analyse two notions of stability which will be useful for studying either
an individual or a population of individuals who behave according to the converged
consumption rule. Consider an individual who at time t holds normalized market
resources mt, and market resources in levels m t, and follows the converged decision
function c. The time-t consumption for the consumer will be ct = c(mt) and normalized
market resources in time t+1 will be a random variable mt+1 = R̃t+1(mt−c(mt))+ξξξt+1.23

Our first notion of stability concerns the existence of a unique ‘buffer stock target’
for the individual; we are interested in whether the current level of normalized market
resources is above or below a ‘target’ level such that the magnitude of the precautionary
motive (which causes a consumer to save) exactly balances the impatience motive (which
makes them want to dissave). At the individual target, expected normalized market
resources in the next period, conditioned on current normalized market resources, will
be the same as in the current period. The intensifying strength of the precautionary
motive with decreasing market resources can ensure stability of the target. Below the
target, the urgency to save due to the precautionary motive leads to an expected rise
in market resources. Conversely, above the target, impatience prevails, leading to an
expected reduction of market resources.

Our second, weaker, notion of stability gives conditions for the invidiual such that
an aggregate balanced growth path exists. To motivate this notion, consider Figure 1
which shows the expected growth factors for consumption, the level of market resources,
and normalized market resources, Et[ct+1/ct], Et[m t+1/m t], and Et[mt+1/mt].24 Begin
by noting how the figure shows that as mt → ∞ the expected consumption growth
factor goes to ÞÞÞ, indicated by the lower bound in Figure 1. Moreover, as mt approaches
zero, the consumption growth factor approaches ∞. (Proposition 4 in Appendix B.1
establishes the asymptotic growth factors formally.)

Next, consider the implications of Figure 1 for individual stability. The figure shows
a buffer stock target for normalized market resources, mt = m̌, at which the expected
growth factor of the level of market resources m matches the expected growth factor
of permanent income G. A distinct and larger target ratio, m̂, also exists. At this
ratio, Et[mt+1/mt] = 1, and the expected growth factor of consumption is less than G.
Importantly, conditioned on an individual’s time t state, this model does not have a
single m at which p, m and c are all expected to grow at the same rate. Yet, when we
aggregate across individuals, balanced growth paths can exist. Importantly, balanced
growth paths can exist even if a buffer stock target, where Et[mt+1/mt] = 1, does not

23None of the arguments in either of the two prior sections depended on the assumption that the
consumption functions had converged. With more cumbersome notation, each derivation could have
been replaced by the corresponding finite-horizon versions. This strongly suggests that it should be
possible to extend the circumstances under which the problem can be shown to define a contraction
mapping to the union of the parameter values under which {RIC,FHWC} hold and {FVAC,WRIC}
hold. That extension is not necessary for our purposes here, so we leave it for future work.

24The figure is generated using parameters discussed in Section 5, Table 2.
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Figure 1 Buffer Stock Target and Pseudo-Target

exist. What we require for aggregate stability is the weaker notion of a ‘pseudo-target’
target, namely that there is some m̌ such that if mt > m̌, then Et[m t+1/m t] < G.

3.1 Existence of Target and Pseudo-Target
For both results below, consider the problem defined in Section 2.1. The first stabiltiy
result guarantees the existence of a buffer stock target m̂ such that if mt = m̂, then
Et[mt+1] = mt. Existence of such a target requires strong growth impatience.

Theorem 3. (Buffer Stock Target). If weak return impatience (Assumption L.4), finite
value of autarky (Assumption L.1) and strong growth impatience (Assumption S.2) hold,
then there exists m̂, with m̂ > 0, such that:

Et[mt+1/mt] = 1 if mt = m̂, (28)

and,
∀mt ∈ (0, m̂), Et[mt+1] > mt

∀mt ∈ (m̂,∞), Et[mt+1] < mt.
(29)

Proof. See Appendix B.2.1 for the proof.

Since mt+1 = (mt − c(mt))R̃t+1 + ξξξt+1, the implicit equation for m̂ becomes:

Et[(m̂− c(m̂))R̃t+1 + ξξξt+1] = m̂

(m̂− c(m̂))REt[ψ−1]︸ ︷︷ ︸
: =

¯̃
R

+1 = m̂. (30)
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The second, and less restrictive, definition of a target derives from a traditional
aggregate question in macro models: whether or not there is a ‘balanced growth’ path
in which aggregate variables (income, consumption, market resources) all grow by the
same factor G. In particular, if growth impatience holds, the problem will exhibit a
‘pseudo-target’, by which we mean that there is some m̌ such that if mt > m̌, then
Et[m t+1/m t] < G. Conversely if mt < m̌ then Et[m t+1/m t] > G. The pseudo-target
m̌ will be such that m growth matches G, allowing us to write the implicit equation for
m̌ as follows:

Et[m t+1]/m t = Et[p t+1]/p t
Et[mt+1Gψt+1p t]/(mtp t) = Et[p tGψt+1]/p t

Et


ψt+1 ((mt − c(mt)R/(Gψt+1)) + ξξξt+1)︸ ︷︷ ︸

mt+1


 /mt = 1

Et


(m̌− c(m̌))

R︷︸︸︷
R/G +ψt+1ξξξt+1


 = m̌

(m̌− c(m̌))R+ 1 = m̌.

(31)

The only difference between (31) and (30) is the substitution of R for ¯̃
R.25,

Under the weaker growth impatience condition, we can verify the existence of this
pseudo-target, m̌.

Theorem 4. (‘Pseudo-Target’). If weak return impatience (Assumption L.4), finite
value of autarky (Assumption L.1) and growth impatience (Assumption S.1) hold, then
there exists a unique m̌, with m̌ > 0 such that:

Et[ψt+1mt+1/mt] = 1 if mt = m̌. (32)

Moreover,
∀mt ∈ (0, m̌), Et[m t+1]/m t > G
∀mt ∈ (m̌,∞), Et[m t+1]/m t < G.

(33)

Proof. See Appendix B.2.2 for the proof.

25A third ‘stable point’ is the m̃ where Et[logm t+1] = log Gm t; this can be conveniently rewritten
as Et

[
log
(
(m̃− c(m̃))R̃+ ψt+1ξξξt+1

)]
= log m̃t. Because the expectation of the log of a stochastic

variable is less than the log of the expectation, if a solution for m̃ exists it will satisfy m̃ > m̌; in turn,
if m̂ exists, m̂ > m̃. The target m̃ is guaranteed to exist when the log growth impatience condition
is satisfied (see below). For our purposes, little would be gained by an analysis of this point parallel
to those of the other points of stability; but to accommodate potential practical uses, the Econ-ARK
toolkit computes the value of this point (when it exists) as mBalLog.
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Figure 2

Figure 3 Finite value of autarky and growth impatience hold but strong growth
impatience fails: No Individaul Target Exists But Aggregate Target Does

3.2 Example With Balanced-Growth m̌ But No Target m̂
Because the equations defining the buffer stock target and pseudo-target, (30) and (31),
differ only by substitution of R for ¯̃

R = RE[ψ−1], if there are no permanent shocks
(ψ ≡ 1), the conditions are identical. For many parameterizations (e.g., under the
baseline parameter values used for constructing figure 1), m̂ and m̌ will not differ much.

An illuminating exception is exhibited in Figure 3, which modifies the baseline pa-
rameter values by quadrupling the variance of the permanent shocks, enough to cause
failure of strong growth impatience; now there is no target level of market resources
m̂. Nonetheless, the pseudo-target still exists because it turns off realizations of the
permanent shock. It is tempting to conclude that the reason target m̂ does not exist is
that the increase in the size of the shocks induces a precautionary motive that increases
the consumer’s effective patience. The interpretation is not correct because as market
resources approach infinity, precautionary saving against noncapital income risk becomes
negligible (as the proportion of consumption financed out of such income approaches
zero). The correct explanation is more prosaic: The increase in uncertainty boosts the
expected uncertainty-modified rate of return factor from R to ¯̃

R > R which reflects the
fact that in the presence of uncertainty the expectation of the inverse of the growth
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factor increases: G > G. That is, in the limit as m → ∞ the increase in effective
impatience reflected in ÞÞÞ/GE[ψ−1] < ÞÞÞ/G is entirely due to the certainty-equivalence
growth adjustment, not to a (limiting) change in precaution. In fact, the next section will
show that an aggregate balanced growth equilibrium will exist even when realizations of
the permanent shock are not turned off: The required condition for aggregate balanced
growth is the regular growth impatience, which ignores the magnitude of permanent
shocks.26

Before we get to the formal arguments, the key insight can be understood by consid-
ering an economy that starts, at date t, with the entire population at mt = m̌, but then
evolves according to the model’s assumed dynamics between t and t+ 1. Equation (31)
will still hold, so for this first period, at least, the economy will exhibit balanced growth:
the growth factor for aggregate M will match the growth factor for permanent income
G. It is true that there will be people for whom the financial balances ratio, bt+1, where
bt+1 = atR/(Gψt+1), is boosted by a small draw of ψt+1. However, their contribution
to the level of the aggregate variable is given by b t+1 = bt+1p tGψt+1, so their bt+1

is reweighted by an amount that exactly unwinds that divisor-boosting. This means
that it is possible for the consumption-to-permanent-income ratio for every consumer to
be small enough that their market resources ratio is expected to rise, and yet for the
economy as a whole to exhibit a balanced growth equilibrium with a finite aggregate
balanced growth steady state M̌ (this is not numerically the same as the individual
pseudo-target ratio m̌ because the problem’s nonlinearities have consequences when
aggregated).27

4 Aggregate Invariant Relationships
In this section, we move from characterizing the individual decision rule to properties of
a distribution of individuals following the converged non-degenerate consumption rule
c. Assume a continuum of ex ante identical buffer-stock households, with constant total
mass normalized to one and indexed by i. Szeidl (2013) proved that such a population,
following the consumption rule c, will be characterized by invariant distributions of m,

26Szeidl (2013)’s impatience condition, discussed below, also tightens as uncertainty increases, but
this is also not a consequence of a precaution-induced increase in patience – it represents an increase in
the tightness of the requirements of the ‘mixing condition’ used in his proof.

27Still, the pseudo-target can be calculated from the policy function without any simulation, and
therefore serves as a low-cost starting point for the numerical simulation process; see Harmenberg-
Aggregation for an example.
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c, and a under the log growth impatience condition:28

log ÞÞÞ/G < E[logψ] (35)

which is stronger than our growth impatience (ÞÞÞ/G < 1), but weaker than our strong
growth impatience (ÞÞÞ/GE[ψ−1] < 1).29

Harmenberg (2021a) substitutes a clever change of probability-measure into
Szeidl’s proof, with the implication that under growth impatience, invariant
permanent-income-weighted distributions of m and c exist (see Section C.1 in the
Appendix). In particular, let Fmt,pt

be the joint CDF of normalized market resources
and permanent income at time t.30 The permanent-income-weighted CDF of mt, F̃mt ,
will be:

F̃mt(x) = G−t
∫ x

0

∫ ∞

0

pFmt,pt
(dm, dp) (36)

Simply put, the permanent-income-weighted CDF shows how the total ‘mass’ of per-
manent income is distributed along normalized market resources. The change of variables
allows Harmenberg (2021a) to prove a conjecture from an earlier draft of this paper
(Carroll (2019, Submitted)) that under growth impatience, aggregate consumption grows
at the same rate G as aggregate noncapital income in the long run (with the corollary
that aggregate assets and market resources grow at that same rate). Harmenberg (2021a)
also shows how the reformulation can reduce costs of calculation by over a factor of 100.31
The remainder of this section draws out the implications of these points for aggregate
balanced growth factors.

4.1 Aggregate Balanced Growth of Income, Consumption, and Wealth
Define M to yield the expected value operator with respect to the empirical distribution
of a variable across the population (as distinct from the operator E which represents

28Szeidl (2013)’s equation (9), in our notation, is:

E logR(1− κ) < E log Gψ
E logRÞÞÞ/R < E log Gψ

logÞÞÞ/G < E logψ

(34)

which, exponentiated, yields (35).
29Under our default (though not required) assumption that logψ ∼ N (−σ2

ψ/2, σ
2
ψ); strong growth

impatience in this case, is ÞÞÞ/G < exp(−σ2), so if strong growth impatience holds then Szeidl’s condition
will hold.

30In the notation in Harmenberg (2021a), the permanent-income-weighted measures are denoted as
ψ̃m.

31The Harmenberg method is implemented in the Econ-ARK; see the last part of
test_Harmenbergs_method.sh. Confirming the computational advantage of Harmenberg’s method,
this notebook finds that the Harmenberg method reduces the simulation size required for a given degree
of accuracy by two orders of magnitude under the baseline parameter values defined above.
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beliefs about the future for a given individual).32 Using boldface capitals for aggregates,
the growth factor for aggregate noncapital income becomes:

Y t+1/Y t = M [ξξξt+1Gψt+1p t] /M [p tξξξt] = G

because of the independence assumptions we have made about the shocks ξξξ and ψ.
Consider an economy that satisfies the Szeidl impatience condition (35) and has existed

for long enough by date t that we can consider it as Szeidl-converged. In such an economy
a microeconomist with a population-representative panel dataset could calculate the
growth factor of consumption for each individual household, and take the average:

M [∆ log ct+1] = M
[
log ct+1p t+1 − log ctp t

]

= M
[
log p t+1 − log p t

]
+M [log ct+1 − log ct] .

(37)

Because this economy is Szeidl-converged, distributions of ct and ct+1 will be identical,
so that the second term in (37) disappears; hence, mean cross-sectional growth factors
of consumption and permanent income are the same:

M [∆ log ct+1] = M
[
∆ log p t+1

]
= log G. (38)

In a Harmenberg-invariant economy (and therefore also any Szeidl-invariant economy),
a similar proposition holds in the cross-section as a direct implication of the fact that a
constant proportion of total permanent income is accounted for by the successive sets
of consumers with any particular m (recall Equation (36)). This fact is one way of
interpreting Harmenberg’s definition of the density of the permanent-income-weighted
invariant distribution of m; call this density f̃ . To understand f̃ , we can see how total
aggregate market resources held by people with given m will be:

M t = P tf̃(m)m (39)

By implication of Theorem 4, M t grows at a rate G. We will now use this property of f̃
to show that aggregate consumption also grows at rate G. Call C t(m) the total amount
of consumption at date t by persons with market resources m, and note that in the
invariant economy this is given by the converged consumption function c(m) multiplied
by the amount of permanent income accruing to such people f̃(m)P t. Since f̃(m) is
invariant and aggregate permanent income grows according to P t+1 = GP t, for any m,

32Formally, fix an individual i and let {c̃it}∞t=0 and {m̃i
t}∞t=0 be a stochastic recursive sequence

generated by the converged consumption rule as follows, c̃it = c(m̃i
t) and m̃i

t+1 = R̃it+1(m̃
i
t−c(m̃i

t))+ξξξ
i
t+1,

where the sequence of exogenous shocks are each defined on a theoretical probability space (Ω,Σ,P).
Integration with respect to the measure P in the expected value operator E will be equivalent to
empirical integration M with respect to a suitable measure of agents on a nonatomic agent space. In
particular, for all j, Eg(c̃jt ) =

∫
c̃t dP = Mg(c̃t) : =

∫
g(c̃it)λ(di), where λ is the measure of agents and

for any measurable function g. For technical steps required to assert this claim, see Shanker (2017),
which utilizes relatively recent results by Sun and Zhang (2009) and also the detailed construction by
Cao (2020).
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the following characterizes the growth of total consumption:

logC t+1 − logC t = log c(m)f̃(m)P t+1 − log c(m)f̃(m)P t

= log G.

4.2 Aggregate Balanced Growth and Idiosyncratic Covariances
Harmenberg shows that the covariance between the individual consumption ratio c and
the idiosyncratic component of permanent income p does not shrink to zero; thus,
covariances are another potential measurement for construction of microfoundations.

Consider a date-t Harmenberg-converged economy, and define the mean value of the
consumption ratio as c̄t+n ≡M[ct+n]. Normalizing period-t aggregate permanent income
to P t = 1, total consumption at t+ 1 and t+ 2 are

C t+1 = M[ct+1p t+1] = c̄t+1G1 + covt+1(ct+1,p t+1)

C t+2 = M[ct+2p t+2] = c̄t+2G2 + covt+2(ct+2,p t+2)
(40)

and Harmenberg’s proof that C t+2 − GC t+1 = 0 allows us to obtain:

(c̄t+2 − c̄t+1)G2 = G covt+1− covt+2 . (41)

In a Szeidl-invariant economy, c̄t+2 = c̄t+1, so the economy exhibits balanced growth
in the covariance:

covt+2 = G covt+1 . (42)

The more interesting case is when the economy is Harmenberg- but not Szeidl-
invariant. In that case, if the cov and the c̄ terms have constant growth factors Ωcov

and Ωc̄,33 an equation corresponding to (41) will hold in t+ n:

(

c̄t+n︷︸︸︷
Ωn
c̄ c̄t−Ωn−1

c̄ c̄t)Gn =
(
GΩn−1

cov − Ωn
cov

)
covt

(Ωc̄G)n−1(Ωc̄ − 1)c̄tG = Ωn−1
cov (G − Ωcov) covt

(43)

so for the LHS and RHS to grow at the same rates we need

Ωcov = Ωc̄G. (44)

This is intuitive: In the Szeidl-invariant economy, it just reproduces our result above
that the covariance exhibits balanced growth because Ωc̄ = 1. The revised result just
says that in the Harmenberg case where the mean value c̄ of the consumption ratio c
can grow, the covariance must rise in proportion to any ongoing expansion of c̄ (as well
as in proportion to the growth in p).

33This ‘if’ is a conjecture, not something proven by Harmenberg (or anyone else). But see
appendix C.2 for an example of a Harmenberg-invariant economy in which simulations suggest this
proposition holds.
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4.3 Implications for Microfoundations
Thus we have microeconomic propositions, for both growth factors and for covariances
of observable variables,34 that can be tested in either cross-section or panel microdata
to judge (and calibrate) the microfoundations that should hold for any macroeconomic
analysis that requires balanced growth for its conclusions.

At first blush, these points are reassuring; one of the most persuasive arguments for
the agenda of building microfoundations of macroeconomics is that newly available ‘big
data’ allow us to measure cross-sectional covariances with great precision, so that we
can use microeconomic natural experiments to disentangle questions that are hopelessly
entangled in aggregate time-series data. Knowing that such covariances ought to be a
stable feature of a stably growing economy is therefore encouraging.

But this discussion also highlights an uncomfortable point: In the model as specified,
permanent income does not have a limiting distribution; it becomes ever more dispersed
as the economy with infinite-horizon consumers continues to exist indefinitely.

A few microeconomic data sources permit direct measurement of ‘permanent income’;
among the best (in data quality and span) is data from the Norwegian national registry,
which has a long span of well-measured data for millions of Norwegians. Recent work
by Crawley, Holm, and Tretvoll (2022) demonstrates that these data point strongly to the
presence of a component of income shocks that is either truly permanent, or so extremely
highly serially correlated as to be indistinguishable from permanent shocks. Using IRS
tax data, DeBacker, Heim, Panousi, Ramnath, and Vidangos (2013) similarly find a large
permanent (or very nearly permanent) component to income shocks. In quite a different
exercise Carroll, Slacalek, Tokuoka, and White (2017) show that their calibration of the
magnitude of permanent shocks (and mortality; see below) yield a simulated distribution
of permanent income that matches answers in the U.S. Survey of Consumer Finances
(‘SCF’) to a question designed to elicit a direct measure of respondents’ permanent
income.

For macroeconomists who want to build microfoundations by comparing the microe-
conomic implications of their models to micro data (directly – not in ratios to difficult-
to-meaure ‘permanent income’), it would be something of a challenge to determine how
to construct empirical-data-comparable simulated results from a model with no limiting
distribution of permanent income.

Death can solve this problem.

4.4 Mortality Yields Invariance
Most heterogeneous-agent models incorporate a constant positive probability of death,
following Blanchard (1985) and Yaari (1965). In the Blanchardian model, if the probabil-
ity of death exceeds a threshold that depends on the size of the permanent shocks, Car-
roll, Slacalek, Tokuoka, and White (2017) show that the limiting distribution of perma-
nent income has a finite variance. Blanchard (1985) assumes a universal annuitization
scheme in which estates of dying consumers are redistributed to survivors in proportion

34Parallel results to those for consumption can be obtained for other measures like market assets.
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to survivors’ wealth, giving the recipients a higher effective rate of return. This treatment
has considerable analytical advantages, most notably that the effect of mortality on the
time preference factor is the exact inverse of its effect on the (effective) interest factor.
That is, if the ‘pure’ time preference factor is β and probability of remaining alive (not
dead) is L, then the assumption that no utility accrues after death makes the effective
discount factor β = βL while the enhancement to the rate of return from the annuity
scheme yields an effective interest factor R̄ = R/L (recall that because of white-noise
mortality, the average wealth of the two groups is identical). Combining these, the
effective patience factor in the new economy βR̄ is unchanged from its value in the
infinite-horizon model:

βR̄ = (βLR/L)1/γ = (Rβ)1/γ = ÞÞÞ. (45)

The only adjustments this requires to the analysis above are therefore to the few
elements that involve a role for the interest factor distinct from its contribution to ÞÞÞ
(principally, the RIC, which becomes ÞÞÞ/R̄).

Blanchard (1985)’s innovation was valuable not only for the insight it provided but
also because when he wrote, the principal alternative, the Life Cycle model of Modigliani
(1966), was computationally challenging given then-available technologies. Despite its
(considerable) conceptual value, Blanchard’s analytical solution is now rarely used be-
cause essentially all modern modeling incorporates uncertainty, constraints, and other
features that rule out analytical solutions anyway.

The simplest alternative to Blanchard is to follow Modigliani in constructing a realistic
description of income over the life cycle and assuming that any wealth remaining at death
occurs accidentally (not implausible, given the robust finding that for the great majority
of households, bequests amount to less than 2 percent of lifetime earnings, Hendricks
(2001, 2016)).

Even if bequests are accidental, a macroeconomic model must make some assumption
about how they are disposed of: As windfalls to heirs, estate tax proceeds, etc. We again
consider the simplest choice, because it represents something of a polar alternative to
Blanchard. Without a bequest motive, there are no behavioral effects of a 100 percent
estate tax; we assume such a tax is imposed and that the revenues are effectively thrown
in the ocean: The estate-related wealth effectively vanishes from the economy.

The chief appeal of this approach is the simplicity of the change it makes in the
condition required for the economy to exhibit a balanced growth equilibrium (for con-
sumers without a life cycle income profile). If L is the probability of remaining alive,
the condition changes from the plain growth impatience to a looser mortality-adjusted
version of growth impatience:

LÞÞÞG < 1. (46)

With no income growth, what is required to prohibit unbounded growth in aggregate
wealth is the condition that prevents the per-capita wealth-to-permanent-income ratio
of surviving consumers from growing faster than the rate at which mortality diminishes
their collective population. With income growth, the aggregate wealth-to-income ratio
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Figure 4 Convergence of the Consumption Rules

will head to infinity only if a cohort of consumers is patient enough to make the desired
rate of growth of wealth fast enough to counteract combined erosive forces of mortality
and productivity.

5 Consumer Patience and Limiting Consumption
Having established our formal results, we are ready to describe how the various patience
conditions determine the characteristics of the limiting consumption function. To fix
ideas, we start with a quantitative example using the familiar benchmark case where
return impatience, growth impatience and finite human wealth all hold, shown by
Figure 4. The figure depicts the successive consumption rules that apply in the last
period of life (cT ), the second-to-last period, and earlier periods under parameter values
listed in Table 2. (The 45 degree line is cT (m) = m because in the last period of life it
is optimal to spend all remaining resources.)

Under the same parameter values, Figures 5–6 capture the theoretical bounds and
MPCs of the converged consumption rule. In Figure 5, as m rises, the marginal propen-
sity to consume approaches κ = (1−ÞÞÞ/R) as m→∞, the same as the perfect foresight
MPC. Moreover, as m approaches zero, the MPC approaches κ = (1− ℘1/γÞÞÞ/R).

While in the presence of a constraint neither return impatience nor growth impatience
is individually necessary for nondegeneracy of c(m), a key conclusion of this section is
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Figure 5 Limiting MPC’s

that if both return impatience and growth impatience fail, the consumption function
will be degenerate (limiting either to c(m) = 0 or c(m) =∞ as the horizon recedes). So,
for a useful solution, at least one of these conditions must hold.35 The case with growth
impatience but return patience is particularly surprising, because it is not immediately
clear what prevents our earlier conclusion (in other circumstances) that return patience
leads c(m) to asymptote to zero. The trick is to note that if return patience holds,
R < ÞÞÞ, while failure of growth impatience means ÞÞÞ < G; together these inequalities
tell us that R < G so (limiting) human wealth is infinite.36 But, if at any m human
wealth is unbounded, what prevents c from asymptoting to c(m) = ∞ as the horizon
gets arbitrarily long? This is where the natural borrowing constraint comes in. We
will show that growth impatience is sufficient, at any fixed m, to guarantee an upper
bound to c(m). The insight is best understood by first abstracting from uncertainty and
studying the perfect foresight case (with and without constraints).

35Recall Claim 1 showing that a double-impatience failure implies autarky value is not finite; and
see

36This logic holds even if both R and G are less than one – in this case, because the agent can borrow
at a negative interest rate and always repay with income that shrinks more slowly than their debt.
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Figure 6 Upper and Lower Bounds on the Consumption Function

5.1 Model with Perfect Foresight
Claims 1-2 established the relationship between the finite value of autarky, return
impatience and growth impatience in the context of a model with uncertainty. The
easiest way to grasp the relations among these conditions is by studying Figure 7. Each
node represents a quantity defined above. The arrow associated with each inequality
imposes the condition, which is defined by the originating quantity being smaller than
the arriving quantity. For example, one way we wrote the finite value of autarky (under
perfect foresight) in Equation (11) is ÞÞÞ < R1/γG1−1/γ, so imposition of finite value of
autarky is captured by the diagonal arrow connecting ÞÞÞ and R1/γG1−1/γ. Traversing
the boundary of the diagram clockwise starting at ÞÞÞ involves imposing first growth
impatience (ÞÞÞ < G) then finite human wealth (G < G(R/G)1/γ ←→ G < R), and
the consequent arrival at the bottom right node tells us that these two conditions
jointly imply perfect-foresight-finite-value-of-autarky. Reversal of a condition reverses
the arrow’s direction; so, for example, the bottom-most arrow going rightwards to
R1/γG1−1/γ implies finite human wealth fails; but we can cancel the cancellation and
reverse the arrow. This would allow us to traverse the diagram clockwise from ÞÞÞ
through G to R1/γG1−1/γ to R, revealing that imposition of growth impatience and finite
human wealth (and, redundantly, finite human wealth again) let us conclude that return
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impatience holds because the starting point is ÞÞÞ and the endpoint is R (and we have
traversed a chain of ‘is greater than’ relations).37
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Figure 7 Perfect Foresight Relation of Consumer Patience Conditions
The acronyms in this figure refer to each of the consumer patience conditions in the perfect foresight
case. Refer to Table 3 for their definitions. An arrowhead points to the larger of the two quantities
being compared; so, following the diagonal arrow imposes that absolute patience is smaller than the
limit defined by the finite value of autarky factor, ÞÞÞ < G(R/G)1/γ (this is one way of writing the
PFFVAC, equation (11)). (The ̸= symbols indicate that the diagram is not commutative; that is, the
different ways of reaching the conclusion that the PFFVAC holds are not equivalent to each other).

In the unconstrained case, finite human wealth was necessary since, without con-
straints, only this condition could prevent infinite borrowing in the limit (Proposition
1). Looking at Figure 7, following the diagonal from ÞÞÞ to the bottom-right corner
corresponds to the direct of imposition of the finite value of autarky, which implies
that the existence of a non-degenerate solution requires return impatience to hold. To
see why, if return impatience failed, proceeding clockwise from the bottom left node of
R would lead to R > R1/γG1−1/γ, (equivalently (G/R)1−1/γ < 1) which corresponds to
failure of finite human wealth (see also Case 3 in Section 5.2.1).

37Consult Appendix E for an exposition of diagrams of this type, which are a simple application of
Category Theory (Riehl (2017)).
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We can understand how failure of finite human wealth leads to infinite borrowing
thinking about growth impatience. From Figure 7, let finite value of autarky hold
(traverse the diagonal from ÞÞÞ) and then reverse the downward arrow from G, signifying
the failure of finite human wealth, so that as the horizon extends and income grows
faster than the rate at which it is discounted, there is no upper bound to the present
discounted value of future income (cf. Equation (18)). But the cancellation of finite
human wealth also indirectly implies that growth impatience holds ÞÞÞ > R1/γG1−γ > G
which tells us that this is a consumer who wants to spend out of their human wealth.
And therefore, at any fixed level of market resources, there is no upper bound to how
much the consumer would choose to borrow as the horizon recedes.

Thus, in the perfect foresight unconstrained model, return impatience is the only
condition at our disposal that can prevent consumption from limiting to zero as the
terminal period recedes. However, when we impose a liquidity constraint, the range of
admissible parameters becomes more interesting.

5.1.1 Perfect Foresight Constrained Solution

We now sketch the perfect foresight constrained solution and demonstrate that a solution
can exist either under return impatience or without return impatience but with growth
impatience (Proposition 2). Our discussion proceeds by examining implications of
possible configurations of the patience conditions. (Tables 3 and 4 codify.)

Case 1: Growth impatience fails and return impatience holds. If growth impa-
tience fails but return impatience holds, Appendix D shows that, for some m#, with
0 < m# < 1, an unconstrained consumer behaving according to the perfect foresight
solution (16) would choose c < m for all m > m#. In this case the solution to the
constrained consumer’s problem is simple; for any m ≥ m# the constraint does not bind
(and will never bind in the future). For such m the constrained consumption function
is identical to the unconstrained one. If the consumer were somehow38 to arrive at
an m# such that m < m# < 1 the constraint would bind and the consumer would
consume c = m. Using c̀ for the perfect foresight consumption function in the presence
of constraints (and analogously for all other functions):

c̀(m) =

{
m if m < m#

c̄(m) if m ≥ m#

where c̄(m) is the unconstrained perfect foresight solution.

Case 2: Growth impatience holds and return impatience holds. When return
impatience and growth impatience both hold, Appendix D shows that the limiting
constrained consumption function is piecewise linear, with c̀(m) = m up to a first

38“Somehow” because m < 1 could only be obtained by entering the period with b < 0 which the
constraint forbids.
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‘kink point’ at m0
# > 1, and with discrete declines in the MPC at a set of kink

points {m1
#,m

2
#, . . .}. As m→∞ the constrained consumption function c̀(m) becomes

arbitrarily close to the unconstrained c̄(m), and the marginal propensity to consume,
c̀′(m), limits to κ.39 Similarly, the value function v̀(m) is non-degenerate and limits to
the value function of the unconstrained consumer.

This logic holds even when finite human wealth fails, because the constraint prevents
the (limiting) consumer40 from borrowing against unbounded human wealth to finance
unbounded current consumption. Under these circumstances, the consumer who starts
with any bt > 0 will, over time, run those resources down so that after some finite
number of periods τ the consumer will reach bt+τ = 0, and thereafter will set c = p for
eternity (which finite value of autarky says yields finite value). Using the same steps as
for Equation (98), value of the interim program is also finite:

v t+τ = Gτ(1−γ)u(p t)
(
1− (βG1−γ)T−(t+τ)+1

1− βG1−γ

)
. (47)

So, even when finite human wealth fails, the limiting consumer’s value for any finite m
will be the sum of two finite numbers: One due to the unconstrained choice made over
the finite-horizon leading up to bt+τ = 0, and one reflecting the value of consuming p t+τ
thereafter.

Case 3: Growth impatience holds and return impatience fails. The most peculiar
possibility occurs only when return impatience fails. As noted above, this possibility is
unavailable to us without a constraint. Without return impatience, finite human wealth
must also fail (Appendix D), and the constrained consumption function is (surprisingly)
non-degenerate. (See appendix Figure 11 for a numerical example). Even though
human wealth is unbounded at any given level of m, since borrowing is ruled out,
consumption cannot become unbounded at that m in the limit as the horizon recedes.
However, the failure of return impatience does have some power: It means that as m
rises without bound, the MPC approaches zero ( lim

m→∞
c̀′(m) = 0). Nevertheless c̀(m) is

finite, strictly positive, and strictly increasing in m. This result reconciles the conflicting
intuitions from the unconstrained case, where failure of return impatience would suggest
a degenerate limit of c̀(m) = 0 while failure of finite human wealth would suggest a
degenerate limit of c̀(m) =∞.

5.2 Model with Uncertainty
We now examine the case with uncertainty but without constraints, which we argued
was a close parallel to the model with constraints but without uncertainty (recall Section
2.4.3).

39See Carroll, Holm, and Kimball (2019) for details.
40That is, one obeying c(m) = lim

n→∞
ct−n(m).
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Table 1 Microeconomic Model Calibration

Calibrated Parameters
Description Parameter Value Source

Permanent Income Growth Factor G 1.03 PSID: Carroll (1992)
Interest Factor R 1.04 Conventional

Time Preference Factor β 0.96 Conventional
Coefficient of Relative Risk Aversion γ 2 Conventional

Probability of Zero Income ℘ 0.005 PSID: Carroll (1992)
Std Dev of Log Permanent Shock σψ 0.1 PSID: Carroll (1992)
Std Dev of Log Transitory Shock σθ 0.1 PSID: Carroll (1992)

Table 2 Model Characteristics Calculated from Parameters

Approximate
Calculated

Description Symbol and Formula Value

Finite Human Wealth Factor R̃−1 ≡ G/R 0.990
PF Value of Autarky Factor ℶ ≡ βG1−γ 0.932

Growth Compensated Permanent Shock ψ ≡ (E[ψ−1])−1 0.990
Uncertainty-Adjusted Growth G ≡ Gψ 1.020

Utility Compensated Permanent Shock ψ ≡ (E[ψ1−γ])1/(1−γ) 0.990

Utility Compensated Growth G ≡ Gψ 1.020

Absolute Patience Factor ÞÞÞ ≡ (Rβ)1/γ 0.999
Return Patience Factor ÞÞÞ/R ≡ ÞÞÞ/R 0.961

Growth Patience Factor ÞÞÞ/G ≡ ÞÞÞ/G 0.970
Modified Growth Patience Factor ÞÞÞ/GE[ψ−1] ≡ ÞÞÞ/G 0.980

Value of Autarky Factor ℶ ≡ βG1−γψ1−γ 0.941

Weak Return Impatience Factor ℘1/γÞÞÞ ≡ (℘βR)1/γ 0.071
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Tables 1 and 2 present calibrations and values of model conditions in the case with
uncertainty, where return impatience, growth impatience and finite value of autarky all
hold. The full relationship among conditions is represented in Figure 8. Though the
diagram looks complex, it is merely a modified version of the earlier simple diagram
(Figure 7) with further (mostly intermediate) inequalities inserted. (Arrows with a
“because” now label relations that always hold under the model’s assumptions.)41
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Figure 8 Relation of All Inequality Conditions
Refer to Table 3 for definitions of acronyms. See Table 2 for Numerical Values of Nodes Under Baseline Parameters

Beyond finite value of autarky, the additional condition sufficient for contraction, weak
return impatience, can be seen to be weak by asking ‘under what circumstances would
the finite value of autarky hold but the weak return impatience fail?’ Algebraically, the
requirement becomes:

βG1−γψ1−γ < 1 < (℘β)1/γ/R1−1/γ. (48)

where ψ : = (E[ψ1−γ])1/(1−γ) < 1. If we require R ≥ 1, the weak return impatience
is ‘redundant’ because now β < 1 < Rγ−1, so that (with γ > 1 and β < 1) return
impatience (and weak return impatience) must hold. But neither theory nor evidence
demand that R ≥ 1. We can therefore approach the question of the relevance of weak
return impatience by asking just how low R must be for the condition to be relevant.
Suppose for illustration that γ = 2, ψ1−γ = 1.01, G1−γ = 1.01−1 and ℘ = 0.10. In that

41Again, readers unfamiliar with such diagrams should see Appendix E for a more detailed exposition.
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case (48) reduces to:
β < 1 < (0.1β/R)1/2, (49)

but since β < 1 by assumption, the binding requirement becomes:

R < β/10,

so that for example if β = 0.96 we would need R < 0.096 (that is, a perpetual riskfree
rate of return of worse than -90 percent a year) in order for weak return impatience to
be nonredundant.

Perhaps the best way of thinking about this is to note that the space of parameter
values for which the weak return impatience remains relevant shrinks out of existence
as ℘ → 0, which Section 2.4.3 showed was the precise limiting condition under which
behavior becomes arbitrarily close to the liquidity constrained solution (in the absence
of other risks). On the other hand, when ℘ = 1, the consumer has no noncapital income
(so finite human wealth holds) and with ℘ = 1 weak return impatience is identical to
weak return impatience. However, weak return impatience is the only condition required
for a solution to exist for a perfect foresight consumer with no noncapital income. Thus
weak return impatience forms a sort of ‘bridge’ between the liquidity constrained and
the unconstrained problems as ℘ moves from 0 to 1.

5.2.1 Behavior Under Cases of Conditions

Case 1: Return impatience fails and growth impatience holds In the uncon-
strained perfect foresight problem (Section 2.3), return impatience was necessary for
existence of a non-degenerate solution. It is surprising, therefore, that in the presence
of uncertainty, the much weaker weak return impatience is sufficient for nondegeneracy
(assuming that finite value of autarky holds). Given finite value of autarky, we can derive
the features the problem must exhibit for return impatience to fail (that is, R < (Rβ)1/γ)
(given that growth impatience holds) as follows:

R < (Rβ)1/γ < (R(Gψ)γ−1)
1/γ

⇒ R < (R/G)1/γGψ1−1/γ

⇒ R/G < ψ

(50)

but since ψ < 1 (for γ > 1 and non-degenerate ψ), this requires R/G < 1. Thus, given
finite value of autarky, return impatience can fail only if human wealth is unbounded
and growth impatience holds.42

42This algebraically complicated conclusion could be easily reached diagrammatically in Figure 8
by starting at the R node and imposing the failure of return impatience, which reverses the return
impatience arrow and lets us traverse the diagram along any clockwise path to the perfect foresight
finite value of autarky node at which point we realize that we cannot impose finite human wealth
because that would let us conclude R > R.

38



As in the perfect foresight constrained problem, unbounded limiting human wealth
here does not lead to a degenerate limiting consumption function (finite human wealth
is not required for Theorem 2). But, from equation (15) and the discussion surrounding
it, an implication of the failure of return impatience is that lim

m→∞
c′(m) = 0. Thus,

interestingly, in this case (unavailable in the perfect foresight unconstrained) model the
presence of uncertainty both permits unlimited human wealth (in the n→∞ limit) and
at the same time prevents unlimited human wealth from resulting in (limiting) infinite
consumption (at any finite m). Intuitively, the utility-imposed ‘natural constraint’ that
arises from the possibility of a zero income event prevents infinite borrowing and at
the same time allows infinite human wealth to prevent patience from resulting, as it
does under other conditions, in the degenerate c(m) = 0 as the terminal period recedes.
Thus, in presence of uncertainty of the kind we assume, pathological patience (which
in the perfect foresight model results in a limiting consumption function of c(m) = 0)
plus unbounded human wealth (which the perfect foresight model prohibits because it
leads to a limiting consumption function c(m) = ∞ for any finite m) combine to yield
a unique finite limiting (as n→∞) level of consumption and MPC for any finite value
of m.

Note the close parallel to the conclusion in the perfect foresight liquidity constrained
model in the case where return impatience fails (Case 3 in Section 5.1.1). There, too,
the tension between infinite human wealth and pathological patience was resolved with
a non-degenerate consumption function whose limiting MPC was zero.43

Case 2: Return impatience holds and growth impatience holds with finite human
wealth This is the benchmark case we presented at the start of the Section. If return
impatience and finite human wealth both hold, a perfect foresight solution exists (Section
2.3). As m→∞ the limiting c and v functions become arbitrarily close to those in the
perfect foresight model, because human wealth pays for a vanishingly small portion of
spending (Section 2.4.1).

Case 3: Return impatience holds and growth impatience holds with infinite
human wealth The more exotic case is where finite human wealth fails but both growth
impatience and return impatience also hold. In the unconstrained perfect foresight
model, this is the degenerate case with limiting c̄(m) =∞. Here, infinite human wealth
and finite value of autarky implies that (perfect foresight) finite value of autarky holds
and that ÞÞÞ < G. To see why, traverse Figure 8 clockwise from ÞÞÞ by imposing perfect
foresight finite value of autarky to reach the PF-FVAF node. Because the bottom arrow
pointing to the right, connecting the R and perfect foresight finite value of autarky nodes,
imposes the failure of finite human wealth (and here we are assuming that condition
holds), we can reverse the bottom arrow and traverse the resulting clockwise path from
FVAC to see that

ÞÞÞ < (R/G)1/γG ⇒ ÞÞÞ < G (51)

43Ma and Toda (2020) derive conditions under which the limiting MPC is zero in an even more
general case where there is also capital income risk.
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where the transition from the first to the second lines is justified because failure of finite
human wealth implies ⇒ (R/G)1/γ < 1. So, under return impatience and finite human
wealth, we must have growth impatience.

However, we are not entitled to conclude that strong growth impatience holds: ÞÞÞ < G
does not imply ÞÞÞ < ψG where ψ < 1.

We have now established the principal points of comparison between the perfect fore-
sight solutions and the solutions under uncertainty; these are codified in the remaining
parts of Tables 3 and 4.
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Table 3 Definitions and Comparisons of Patience Conditions

Perfect Foresight Versions Uncertainty Versions
Finite Limiting Human Wealth (FHWC)

G/R < 1 G/R < 1

The growth factor for permanent income
G must be smaller than the discounting
factor R for human wealth to be finite.

The model’s risks are mean-preserving
spreads, so the PDV of future income is

unchanged by their introduction.

Absolute Impatience Condition
ÞÞÞ < 1 ÞÞÞ < 1

The unconstrained consumer is
sufficiently impatient that the level of

consumption will be declining over time:

If wealth is large enough, the expectation
of consumption next period will be

smaller than this period’s consumption:

ct+1 < ct lim
mt→∞

Et[ct+1] < ct

Return Impatience
Return Impatience Condition (RIC) Weak RIC (WRIC)

ÞÞÞ/R < 1 ℘1/γÞÞÞ/R < 1

The growth factor for consumption ÞÞÞ
must be smaller than the discounting

factor R, so that the PDV of current and
future consumption will be finite:

If the probability of the zero-income
event is ℘ = 1 then income is always zero
and the condition becomes identical to

the RIC. Otherwise, weaker.

c′(m) = 1−ÞÞÞ/R < 1 c′(m) < 1− ℘1/γÞÞÞ/R < 1

Growth Impatience
Growth Impatience Condition (GIC) Strong Growth Impatience (GIC-Mod)

ÞÞÞ/G < 1 ÞÞÞE[ψ−1]/G < 1

For an unconstrained PF consumer, the
ratio of c to p will fall over time. For
constrained, guarantees the constraint

eventually binds. Guarantees
lim
mt↑∞

Et[ψt+1mt+1/mt] = ÞÞÞ/G

By Jensen’s inequality stronger than GIC.
Ensures consumers will not expect to

accumulate m unboundedly.

lim
mt→∞

Et[mt+1/mt] = ÞÞÞ/GE[ψ−1]

Finite Value of Autarky
PFFVAC FVAC
βG1−γ < 1 βG1−γE[ψ1−γ] < 1

equivalently ÞÞÞ < R1/γG1−1/γ

The discounted utility of constrained
consumers who spend their permanent
income each period should be finite.

By Jensen’s inequality, stronger than the
PFFVAC because for γ > 1 and
nondegenerate ψ, E[ψ1−γ ] > 1.
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Table 4 Sufficient Conditions for Nondegenerate‡ Solution

Consumption Model(s) Conditions Comments
c̄(m): PF Unconstrained RIC, FHWC◦ RIC⇒ |v(m)| <∞; FHWC⇒ 0 < |v(m)|
c(m) = κm PF model with no human wealth (h = 0)

Section 2.3.1: RIC prevents c̄(m) = c(m) = 0
Section 2.3.1: FHWC prevents c̄(m) =∞

Eq (54) in Appendix A.2: PFFVAC+FHWC ⇒ RIC
Eq (53) in Appendix A.2: GIC+FHWC ⇒ PFFVAC
c̀(m): PF Constrained ���GIC, RIC FHWC holds (G < ÞÞÞ < R⇒ G < R)

Section 5.1.1: c̀(m) = c̄(m) for m > m# < 1
(���RIC would yield m# = 0 so c̀(m) = 0)

Appendix D: GIC,RIC limm→∞ c̀(m) = c̄(m), lim
m→∞

κ̀κκ(m) = κ

kinks where horizon to b = 0 changes∗
Appendix D: GIC,���RIC lim

m→∞
κ̀κκ(m) = 0

kinks where horizon to b = 0 changes∗

c(m): Friedman/Muth Section 2.4.1 & 2.4.2 c(m) < c(m) < c̄(m)
v(m) < v(m) < v̄(m)

Section 2.4.2: FVAC, WRIC Sufficient for Contraction
Section 5.2: WRIC is weaker than RIC

Figure 8: FVAC is stronger than PFFVAC
Section 5.2.1: Case 3 ����FHWC+RIC ⇒GIC, lim

m→∞
κκκ(m) = κ

Section 5.2.1: Case 1 ���RIC ⇒����FHWC, lim
m→∞

κκκ(m) = 0

Section 3.1: “Buffer Stock Saving” Conditions
Theorem 3: GIC ⇒ ∃ m̌ s.t. 0 < m̌ <∞
Theorem 4: GIC-Mod ⇒ ∃ m̂ s.t. 0 < m̂ <∞

‡For feasible m satisfying 0 < m <∞, a nondegenerate limiting consumption function defines a
unique optimal value of c satisfying 0 < c(m) <∞; a nondegenerate limiting value function defines a
corresponding unique value of −∞ < v(m) < 0 .
◦RIC, FHWC are necessary as well as sufficient for the perfect foresight case. ∗That is, the first kink

point in c(m) is m# s.t. for m < m# the constraint will bind now, while for m > m# the constraint
will bind one period in the future. The second kink point corresponds to the m where the constraint
will bind two periods in the future, etc.
∗∗In the Friedman/Muth model, the RIC+FHWC are sufficient, but not necessary for nondegeneracy
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6 Conclusions
Numerical solutions to optimal consumption problems, in both life cycle and infinite-
horizon contexts, have become standard tools since the first reasonably realistic models
were constructed in the late 1980s. One contribution of this paper is to show that
finite-horizon (‘life cycle’) versions of the simplest such models, with assumptions about
income shocks (transitory and permanent) dating back to Friedman (1957) and stan-
dard specifications of preferences — and without plausible (but computationally and
mathematically inconvenient) complications like liquidity constraints — have attractive
properties (like continuous differentiability of the consumption function, and analytical
limiting MPC’s as resources approach their minimum and maximum possible values).

The main focus of the paper, though, is on the limiting solution of the finite-horizon
model as the time horizon approaches infinity. This simple model has other appealing
features: A ‘Finite Value of Autarky’ condition guarantees convergence of the consump-
tion function, under the mild additional requirement of a ‘Weak Return Impatience
Condition’ that will never bind for plausible parameterizations, but provides intuition
for the bridge between this model and models with explicit liquidity constraints. The
paper also provides a roadmap for the model’s relationships to the perfect foresight
model without and with constraints. The constrained perfect foresight model provides
an upper bound to the consumption function (and value function) for the model with
uncertainty, which explains why the conditions for the model to have a non-degenerate
solution closely parallel those required for the perfect foresight constrained model to
have a non-degenerate solution.

The main use of infinite-horizon versions of such models is in heterogeneous-agent
macroeconomics. The paper articulates intuitive ‘Growth Impatience Conditions’ under
which populations of such agents, with Blanchardian (tighter) or Modiglianian (looser)
mortality will exhibit balanced growth. Finally, the paper provides the analytical basis
for many results about buffer-stock saving models that are so well understood that even
without analytical foundations researchers uncontroversially use them as explanations of
real-world phenomena like the cross-sectional pattern of consumption dynamics in the
Great Recession.
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Appendices
A Appendix for Section 2

A.1 Recovering the Non-Normalized Problem
Letting nonbold variables be the boldface counterpart normalized by p t (as with m =
m/p), consider the problem in the second-to-last period:

vT−1(mT−1,pT−1) = max
0<cT−1<mT−1

u(pT−1cT−1) + βEt[u(pTmT )]

= p1−γ
T−1

{
max

0<cT−1≤mT−1

u(cT−1) + βEt[u(G̃TmT )]

}
.

(52)

Since vT (mT ) = u(mT ), defining vT−1(mT−1) from Problem (PN), we obtain:

vT−1(mT−1,pT−1) = p1−γ
T−1vT−1(mT−1/pT−1︸ ︷︷ ︸

=mT−1

).

This logic induces to earlier periods; if we solve the normalized one-state-variable
problem (PN), we will have solutions to the original problem for any t < T from:

vt(m t,p t) = p1−γ
t vt(mt),

ct(m t,p t) = p tct(mt).

A.2 Perfect Foresight Benchmarks
Proof of Claim 2. First we show that if finite limiting human wealth (Assumption
I.3) and growth impatience (Assumption S.1) are both satisfied, perfect foresight finite
value of autarky (Equation (11)) holds. In particular, note that:

ÞÞÞ < G < R

ÞÞÞ/R < G/R < (G/R)1−1/γ < 1.
(53)

The last line above holds because finite human wealth implies 0 ≤ (G/R) < 1 and
γ > 1⇒ 0 < 1− 1/γ < 1.

Next, we show that if finite limiting human wealth is satisfied, perfect foresight finite
value of autarky (Equation (11)) implies return impatience (Assumption L.3). To see
why, divide both sides of the second inequality in Equation (11) by R, and after some
straightforward algebra, arrive at:

ÞÞÞ/R < (G/R)1−1/γ. (54)

Due to finite limiting human wealth, the RHS above is strictly less than 1 because
(G/R) < 1 (and the RHS is raised to a positive power (because γ > 1)).
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A.3 Properties of the Consumption Function and Limiting MPCs
For the following, a function with k continuous derivatives is called a Ck function.

Lemma 3. Let t < T . If vt is strictly negative, strictly increasing, strictly concave, C3

and satisfies lim
m→0

vt(m) = −∞, then ct is C2.

Proof. Start by defining an end-of-period value function vt as:

vt(a) : = βEt
[
G̃1−γt+1 vt+1

(
R̃t+1a+ ξξξt+1

)]
, a ∈ R++. (55)

Since there is a positive probability that ξξξt+1 will attain its minimum of zero and since
R̃t+1 > 0, we will have that lim

a→0
vt(a) = −∞. Moreover, note that vt(a) is real-valued iff

a > 0. As such, by Leibniz Rule, vt will be C3.
Next, define vt(m, c) as:

vt(m, c) : = u(c) + vt(m− c), (m, c) ∈ R++.

Note that for fixed m, c 7→ vt(m, c) is C3 on (0,m) since vt and u are both C3. Observe
that the value function defined by Problem (PN) can be written as:

vt(m) = max
0<c<m

vt(m, c), m ∈ R++

where the function vt is real-valued if and only if 0 < c < m. Furthermore, lim
c→0

vt(m, c) =

lim
c→m

vt(m, c) = −∞, ∂2vt(m,c)

∂c2
< 0, lim

c→0

∂vt(m,c)

∂c
= +∞, and lim

c→m

∂vt(m,c)

∂c
= −∞.

Letting vt(m, 0) = −∞ and vt(m,m) = −∞, consider that ct(m) is given by:

ct(m) = argmax
0<c<m

vt(m, c) = argmax
0≤c≤m

vt(m, c)

where the maximizer exists, is unique and an interior solution. As such, note that ct
satisfies the first order condition:

u′(ct(m)) = v′t(m− ct(m)).

By the Implicit Function Theorem, ct is continuous and differentiable and:

c′t(m) =
v′′t (at(m))

u′′(ct(m)) + v′′t (at(m))
,

where the function at is defined by the evaluation at(m) = m− ct(m). Since both u and
vt are three times continuously differentiable and ct is continuous, the RHS of the above
equation is continuous and we can conclude that c′t is continuous and ct is in C1.
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Finally, c′t(m) is differentiable because v′′t is C1, ct(m) is C1 and u′′(ct(m))+v′′t (at(m)) <
0. The second derivative c′′t (m) will then be given by:

c′′t (m) =
a′t(m)v′′′t (at) [u

′′(ct) + v′′t (at)]− v′′t (at) [c
′
t(m)u′′′(ct) + a′t(m)v′′′t (at)]

[u′′(ct) + v′′t (at)]
2 ,

where at = at(m) in the equation above. Since v′′t (at(m)) is continuous, c′′t (m) is also
continuous.

Claim 3. For each t, vt is strictly negative, strictly increasing, strictly concave, C3 and
satisfies lim

m→0
vt(m) = −∞.

Proof. We will say a function is ‘nice’ if it satisfies the properties stated by the Proposi-
tion. Assume that for some t+1, vt+1 is nice. Our objective is to show that this implies
vt is also nice; this is sufficient to establish that vt−n is nice by induction for all n > 0
because vT (m) = u(m) and u, where u(m) = m1−γ/(1 − γ), is nice by inspection. By
Lemma 3, if vt+1 is nice, ct is in C2. Next, since both u and vt are strictly concave, both
ct and at, where at(m) = m − ct(m), are strictly increasing (Recall Equation (A.3)).
This implies that vt(m) is nice, since vt(m) = u(ct(m)) + vt(at(m)).

Proof for Proposition 3. By Claim 3, each vt is strictly negative, strictly increasing,
strictly concave, C3 and satisfies lim

m→0
vt(m) = −∞. As such, apply Lemma 3 to conclude

that ct is in C2. To see that ct is strictly increasing, note (A.3). To see that ct is strictly
concave, see Theorem 1. in Carroll and Kimball (1996).

Proof of Lemma 1 (Limiting MPCs). Part (1.): Minimal MPCs

Fix any t and for any mt with mt > 0, we can define et(mt) = ct(mt)/mt and at(mt) =
mt − ct(mt). The Euler equation, Equation (4), can be rewritten as:

et(mt)
−γ = βREt



et+1(mt+1)




=mt+1G̃t+1︷ ︸︸ ︷
Rat(mt) + G̃t+1ξξξt+1

mt







−γ

(56)

where mt+1 = R̃t+1(mt − ct(mt)) + ξξξt+1. The minimal MPC’s are obtained by letting
where mt → ∞. Note that lim

mt→∞
mt+1 = ∞ almost surely and thus lim

mt→∞
et+1(mt+1) =

κt+1 almost surely. Turning to the second term inside the marginal utility on the RHS,
we can write:

lim
mt→∞

Rat(mt) + G̃t+1ξξξt+1

mt

= lim
mt→∞

Rat(mt)

mt

+ lim
mt→∞

G̃t+1ξξξt+1

mt

= R(1− κt) + 0,

(57)
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since G̃t+1ξξξt+1 is bounded. Thus, we can assert:

lim
mt→∞

(
et+1(mt+1)

(
Rat(m) + G̃t+1ξξξt+1

mt

))−γ

= (Rκt+1(1− κt))−γ, (58)

almost surely. Next, the term inside the expectation operator at Equation (56) is
bounded above by

(
Rκt+1(1− κt)

)−γ. Thus, by the Dominated Convergence Theorem,
we have:

lim
mt→∞

βREt

(
et+1(mt+1)

(
Rat(mt) + G̃t+1ξξξt+1

mt

))−γ

= βR(Rκt+1(1− κt))−γ. (59)

Again applying L’Hôpital’s rule to the LHS of Equation (56), letting lim
m→∞

et(m) = κt
and equating limits to the RHS, we arrive at:

ÞÞÞ/Rκt = (1− κt)κt+1

Thus the minimal marginal propensity to consume satisfies the following recursive
formula:

κ−1
t = 1 + κ−1

t+1ÞÞÞ/R, (60)

which implies {κ−1
T−n}∞n=0 is an increasing sequence. Define:

κ−1 : = lim
n→∞

κ−1
T−n (61)

as the limiting (inverse) marginal MPC. If return impatience(Assumption L.3) does not
hold, then lim

n→∞
κ−1
T−n = ∞ and so the limiting MPC is κ = 0. Otherwise if return

impatience (Assumption L.3) holds, then κ > 0.

Part (2.): Maximal MPCs

The Euler Equation (4) can be rewritten as:

et(mt)
−γ = βREt






et+1(mt+1)




=mt+1G̃t+1︷ ︸︸ ︷
Rat(m) + G̃t+1ξξξt+1

mt







−γ


= (1− ℘)βRmγ
tEt
[(

et+1(mt+1)mt+1G̃t+1

)−γ∣∣ ξξξt+1 > 0

]

+ ℘βR1−γEt

[(
et+1(R̃t+1at(m))

mt − ct(m)

mt

)−γ∣∣ ξξξt+1 = 0

]

(62)
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Now consider the first conditional expectation in the second line of Equation (62).
Recall that if ξξξt+1 > 0, then ξξξt+1 = θt+1/(1 − ℘) by Assumption I.1. Since
lim
mt→0

at(mt) = 0, Et[(et+1(mt+1)mt+1G̃t+1)
−γ | ξξξt+1 > 0] is contained in the bounded

interval [(et+1(θ/(1− ℘))Gψθ/(1− ℘))−γ, (et+1(θ̄/(1− ℘))Gψ̄θ̄/(1− ℘))−γ]. As such,
the first term after the second equality above converges to zero as mγ

t converges to zero.
Turning to the second term after the second equality above, once again apply Dom-

inated Convergence Theorem as noted above at Equation (59). As mt → 0, the
expectation converges to κ−γt+1(1− κt)−γ.

Equating the limits on the LHS and RHS of Equation (62), we have κ−γt =
β℘R1−γκ−γt+1(1− κt)−γ. Exponentiating by γ on both sides, we can conclude:

κt = ℘−1/γ(βR)−1/γR(1− κt)κt+1

and,

℘1/γ

ÞÞÞ/R︷ ︸︸ ︷
R−1(βR)1/γ︸ ︷︷ ︸
≡℘1/γÞÞÞ/R

κt = (1− κt)κt+1 (63)

The equation above yields a recursive formula for the maximal marginal propensity to
consume after some algebra:

(℘1/γÞÞÞ/Rκt)
−1

= (1− κt)−1κ−1
t+1

⇒ κ−1
t (1− κt) = ℘1/γÞÞÞ/Rκ−1

t+1

⇒ κ−1
t = 1 + ℘1/γÞÞÞ/Rκ−1

t+1

As noted in the main text, we need weak return impatience(Assumption L.4) for this to
be a convergent sequence:

0 ≤ ℘1/γÞÞÞ/R < 1, (64)

Since κT = 1, iterating (64) backward to infinity, we obtain:

lim
n→∞

κT−n = κ ≡ 1− ℘1/γÞÞÞ/R (65)

A.4 Existence of Limiting Solutions
We state Boyd’s contraction mapping Theorem (Boyd,1990) for completeness.

Theorem 5. (Boyd’s Contraction Mapping) Let B : C𭟋 (S, Y )→ C𭟋 (S, Y ) with S ⊂ R
and Y ⊂ R.

If,

1. the operator B is non-decreasing, i.e. x ≤ y⇒ Bx ≤ By,
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2. we have B0 ∈ C𭟋 (S, Y ), where 0 is the null vector,

3. there exists α with 0 < α < 1 such that for all λ with λ > 0, we have:

B(x + λ𭟋) ≤ Bx + λα𭟋,

then B defines a contraction with a unique fixed point.

Claim 4. If weak return impatience (Assumption L.4) holds, then there exists k such
that for all 0 ≤ ν ≤ κT−k, we have:

℘β(R(1− ν))1−γ < 1 (66)

Proof. By straightforward algebra and Equation (21) from the main text, we have:

℘β(R(1− κ))1−γ = ℘βR1−γ
(
℘1/γ (Rβ)

1/γ

R

)1−γ

= ℘1/γ (Rβ)
1/γ

R
< 1,

where the inequality holds by weak return impatience (Assumption L.4). Finally, the
expression ν 7→ ℘β(R(1− ν))1−γ is continuous and increasing in ν, and we have 1 > κ̄ >
0 and κT−n → κ as n → ∞. As such, there exists k such that ℘β(R(1− κT−k))1−γ < 1
and Equation (66) holds for all ν ≤ κT−n.

Remark 5. By the finite value of autarky (Assumption L.1) and for k large enough, fix
α such that:

α = max{℘β(R(1− κk))1−γ, βEG̃1−γ} < 1 (67)

Note that this implies
α(1− α−1βEG̃1−γ) > 0. (68)

We define the constant ζ as follows:

ζ =
βEG̃1−γ(1− ℘)γθ1−γ
α(1− α−1βEG̃1−γ)

, (69)

and the bounding function, 𭟋, as follows 𭟋(x) = ζ + x1−γ.

Claim 5. If x ∈ C𭟋 (S, Y ), then Tν,νx ∈ C𭟋 (R++,R+).

Proof. By definition, we have

Tν,νx(mt) = max
ct∈[νmt,νmt]

{
u(ct) + βE

[
G̃1−γx (mt+1)

]}
, mt ∈ R++ (70)

where mt+1 = R̃ (mt − ct) + ξξξ.
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First we verify that the mapping ct 7→ E
[
G̃1−γx (mt+1)

]
, which we denote

as g, is continuous. To proceed define the mapping g̃ : R++ × Ω → R by
c, ω 7→

[
G̃(ω)1−γx

(
R̃(ω) (mt − ct) + ξξξ(ω)

)]
and the mapping g : R++×[ψ, ψ]×[0, θ]→ R

by c, ψ, ξξξ 7→
[
G̃1−γx

(
R̃ (mt − ct) + ξξξ

)]
. Fix c and note that for any compact interval

[c̄, c] such that c ∈ [c̄, c] ⊂ R++, c ∈ R++, g(c, •, •) is continuous on [c̄, c]× [ψ, ψ]× [0, θ].
Thus, g is bounded above and below by Ξ̄ and Ξ for any c ∈ [c̄, c] (where Ξ̄ and Ξ do
not depend on c). To show continuity of Eg̃(c, •) for any c ∈ R++, note there exists
[c̄, c] such that c ∈ [c̄, c] ⊂ R++. Thus consider {ci}i, let ci → c and we can assume
ci ∈ [c̄, c] for all i. Since for each i, g̃(ci, ω) is bounded above and below by Ξ̄ and Ξ, by
the Dominated Convergence Theorem, we must have lim

i→∞
Eg̃(ci, •) = Eg̃(c, •).

Next, by Berge’s Maximum Theorem (Theorem 17.31 in Aliprantis and Border (2006)),
since the feasibilty correspondence mt 7→ [νmt, νmt] has a closed graph and is and
compact valued, Tν,νx must be continuous.

Finally, to show that ∥Tν,νx∥𭟋 <∞. We have:

∥Tν,νx∥𭟋 = sup
m





∣∣∣u(c(m)) + βE
[
G̃1−γx (mnext)

]∣∣∣
ζ +m1−γ





≤ sup
m





∣∣∣m1−γ

1−γ + βE
[
G̃1−γx (mnext)

]∣∣∣
ζ +m1−γ





≤ sup
m

{
m1−γ

1−γ
ζ +m1−γ

}
+ sup

m




βE
[
G̃1−γ|x (m) |

]

ζ +m1−γ





<∞,

(71)

where mnext = R̃ (m− c)+ξξξ and the final inequality follows from the triangle inequality
and the fact that x is 𭟋-bounded.

Proof of Theorem 1. Fix k such that Equation (66) holds. By Claim 5, Tν,ν Tν,ν maps
from C𭟋(R++,R) to C𭟋(R++,R). We now verify conditions (1)-(3) of Boyd’s Theorem
(5).

Condition (1). By definition of Tν,ν , we have:

Tν,νx(mt) = max
ct∈[νmt,νmt]

{
u(ct) + βE

[
G̃1−γx (mt+1)

]}
, (72)

where mt+1 = R̃ (mt − ct) + ξξξ. As such, x ≤ y implies Tν,νx(mt) ≤ Tν,νy(mt) by
inspection.
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Condition (2.) Condition (2.) requires that Tν,ν0 ∈ C𭟋 (A,B). By definition,

Tν,ν0(mt) = max
ct∈[νmt,νmt]

{(
c1−γt

1− γ

)
+ β0

}

the solution to which implies Tν,ν0(mt) = u(νmt). Thus, Condition (2) will hold if
(νmt)

1−γ is 𭟋-bounded, which it is if we use the bounding function

𭟋(x) = ζ + x1−γ, (73)

defined in Remark 5.

Condition (3). Finally, we turn to condition (3), which requires us to show
Tν,ν(z + λ𭟋)(mt) ≤ Tν,νz(mt) + λα𭟋(mt) for 0 < α < 1 and λ > 0.

To proceed, define c̆ as the consumption function44 associated with Tν,νz and ĉ as the
consumption function associated with Tν,ν(z + ζ𭟋); using this notation, Condition (3.)
can be rewritten as:

u(ĉ) + βEG̃1−γ(z + ζ𭟋) ◦ m̂next ≤ u(c̆) + βEG̃1−γz ◦ m̆next + ζα𭟋,

where m̆next(m) = R̃(m − c̆(m)) + ξξξ and m̂next(m) = R̃(m − ĉ(m)) + ξξξ. If we now
force the consumer facing z as the next period value function to consume the amount
optimal for the consumer facing z + ζ𭟋, the value for the z consumer must be weakly
lower. That is,

u(ĉ) + βEG̃1−γz ◦ m̂next ≤ u(c̆) + βEG̃1−γz ◦ m̆next.

Thus, condition (3.) will certainly hold under the stronger condition

u ◦ ĉ + βEG̃1−γ(z + λ𭟋) ◦ m̂next ≤ u ◦ ĉ + βEG̃1−γz ◦ m̂next + λα𭟋
⇔ βEG̃1−γ(z + λ𭟋) ◦ m̂next ≤ βEG̃1−γz ◦ m̂next + λα𭟋

⇔ βλEG̃1−γ𭟋 ◦ ˆmnext ≤ λα𭟋
⇔ βEG̃1−γ𭟋 ◦ m̂next ≤ α𭟋

To show (74) holds, recall by Claim 4 that ℘β(R(1− κT−k))1−γ < 1 for k large enough.
As such, define α by Equation (67) and note that ℘β(R(1− κk))1−γ < α < 1 and
α ≥ βEG̃1−γ. Letting â = m− ĉ(m), Equation (74) will be satisfied if:

βE[G̃1−γ(âR̃+ ξξξ)
1−γ

]− αm1−γ < αζ(1− α−1βEG̃1−γ),

44Note that the maximand on the RHS of Equation (72) is continuous (Claim 5) and the feasible set
of consumption choices is compact-valued. As such, a solution to the maximization problem exists for
any mt. Thus, letting Θ be the solution correspondence for the maximization problem, Θ(mt) will be
non-empty and will admit a selector function c̆. See Section 17.11 in Aliprantis and Border (2006).
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which, by imposing finite value of autarky (Assumption L.1) and Equation (68) can be
rewritten as:

ζ >
βE
[
G̃1−γ(âR̃+ ξξξ)

1−γ]− αm1−γ

α(1− α−1βEG̃1−γ)
=: ¯̄M. (74)

Thus, the proof reduces to showing Equation (74) holds. To proceed, consider that
the numerator of (74) is bounded above as follows:

βE
[
G̃1−γ(âR̃+ ξξξ)

1−γ]− αm1−γ = (1− ℘)βE
[
G̃1−γ(âR̃+ θ/(1− ℘))1−γ

]

+ ℘βE
[
G̃1−γ(âR̃)1−γ

]
− αm1−γ

≤ (1− ℘)βE
[
G̃1−γ((1− ν)mR̃+ θ/(1− ℘))1−γ

]

+ ℘βR1−γ((1− ν)m)1−γ − αm1−γ

= (1− ℘)βE
[
G̃1−γ((1− ν)mR̃+ θ/(1− ℘))1−γ

]

+m1−γ


℘β(R(1− ν))1−γ︸ ︷︷ ︸

<α by Claim 4

−α




< (1− ℘)βE
[
G̃1−γ(θ/(1− ℘))1−γ

]

= βEG̃1−γ(1− ℘)γθ1−γ.

(75)

Using Claim 4, we have that ℘β(R(1− ν))1−γ < α since α = max{℘β(R(1− κT−k))1−γ, βEG̃1−γ}
and ν ≤ κk. We can thus conclude that equation (74) will hold since we have

ζ ≥ βEG̃1−γ(1− ℘)γθ1−γ
α(1− α−1βEG̃1−γ)

> ¯̄M. (76)

The proof that Tν,ν defines a contraction mapping under the conditions (L.4) and (L.1)
is now complete.

Proof of Theorem 2 (continued). Proof of part (ii). We next establish the point-
wise convergence of consumption the functions {ctn}∞n=0 along a sub-sequence. Fix any
m ∈ S and consider a convergent subsequence {ctn(i)

(m)}∞i=0 of {ctn(m)}∞n=0. Let the
function c denote the mapping from m to the limit of {ctn(i)

(m)}∞i=0. Since ctn(i)
(m)

solves the time tn(i) finite horizon problem, we have:
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u(ctn(i)
(m))+βE

[
G̃1−γvtn(i)+1

(mtn(i)+1
)
]

≥ u(c) + βE
[
G̃1−γvtn(i)+1(m̂

next)
]
,

(77)

for any c ∈ (0, κm], where mtn(i)+1 = R̃(m − ctn(i)
(m)) + ξξξtn(i)+1 and m̂next =

R̃(m− c) + ξξξtn(i)+1. Allowing n(i) to tend to infinity, the left-hand side converges to:

u(c(m)) + βE
[
G̃1−γv(mnext)

]
, (78)

where mnext = R̃(m− c(m)) + ξξξ. Moreover, the right-hand side converges to:

u(c) + βE
[
G̃1−γv(m̂next)

]
. (79)

Hence, as n(i) tends to infinity, the following inequality is implied:

u(c(m)) + βE
[
G̃1−γv(mnext)

]
≥ u(c) + βE

[
G̃1−γv(m̂next)

]
. (80)

Since the c above was arbitrary, we have:

c(m) ∈ argmax
c∈(0,κm]

{
u(c) + βE

[
G̃1−γv(m̂next)

]}
. (81)

Next, since ctn(i)
→ c pointwise, and vtn(i)

→ v pointwise, we have:

v(m) = lim
i→∞

[
u(ctn(i)

(m)) + βEG̃1−γvtn(i)+1(mtn(i)+1)
]
= u(c(m)) + βEG̃1−γv(mnext).

(82)
where mtn = R̃(m− ctn(m)) and mnext = R̃(m− c(m)). The first equality stems form

the fact that vtn → v pointwise, and because pointwise convergence implies pointwise
convergence along a sub-sequence. To see why lim

i→∞
u(ctn(i)

(m)) = u(c(m)), note the con-
tinuity of u and the convergence of ctn(i)

to c point-wise. Turning to the second inequality,
to see why lim

i→∞
EG̃1−γvtn(i)+1(mtn(i)+1) = EG̃1−γv(mnext), note that vtn(i)+1 converges in

the 𭟋-norm, hence converges uniformly over compact sets in R++ (Fact 1, Appendix
F). Thus, by Fact 2 in Appendix F, vtn(i)+1(mtn(i)+1) converges almost surely. Applying
Dominated Convergence Theorem gives us lim

i→∞
EG̃1−γvtn(i)+1(mtn(i)+1) = EG̃1−γv(mnext).

This completes the proof of part (ii) of the Theorem.

Proof of part (iii). The limits at Equation (82) immediately imply:

v(m) = lim
n→∞

[
u(ctn(m)) + βEG̃1−γvtn+1(mtn+1)

]
= u(c(m)) + βEG̃1−γv(mnext), (83)

since a real valued sequence can have at most one limit.
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Finally, applying Fact 5 from Appendix F, we get ctn(m) → c(m), thus establishing
that ctn converges point-wise to c. Since v ∈ C𭟋(R++,R), we must have that c(m) > 0
for any m > 0, allowing us to conclude that v and c is a non-degenerate limiting solution.

A.5 Properties of the Converged Consumption Function
Let c be the limiting non-degenerate consumption function.

Claim 6. If weak return impatience (Assumption L.4) holds, then c satisfies c(m)−γ =
RβEt[G̃−γt+1c(m

next)−γ], where mnext = R̃(m− c(m)) + ξξξ.

Proof. By Theorem 2, cT−n converges point-wise to c as n → ∞. Since cT−n is the
optimal consumption function for time T − n, cT−n(m)−γ = RβEt[G̃−γt+1cT−n+1(mt+1)

−γ],
where mt+1 = R̃(m−cT−n(m))+ξξξ. Fixing m > 0, R̃(m−cT−n(m))+ξξξ converges almost
surely to R̃(m− c(m)) + ξξξ. Making use of the Dominated Converge (see proof of Claim
5), RβEt[G̃−γt+1cT−n+1(mt+1)

−γ] converges to RβEt[G̃−γt+1c(m
next)−γ]. Since cT−n(m)−γ con-

verges to c(m) and m ∈ R++, the result follows.

Proof of Lemma 2. First, we verify c is concave. Since weak return impatience (As-
sumption L.4) holds, by Theorem 2, cT−n → c point-wise on R++ as n→∞. Moreover,
since R++ is open, we can apply Theorem 10.8 by Rockafellar (1972), which confirms
that c is concave on R++.

Next, note that c(m) > 0 on R++ (recall Remark 4). Thus, we must have that c(m)
m

is non-increasing (see Claim 8 in Appendix F) and since c(m) is feasible (Equation 81),
0 ≤ c(m)

m
≤ 1. Because c(m)

m
is non-increasing and bounded above and below on R++, we

can define κ : = lim
m↓0

c(m)
m

and κ : = lim
m→∞

c(m)
m

where 0 ≤ κ ≤ κ ≤ 1.

We fist show κ = κ and then show κ = κ. Since c satisfies the Euler equation by
Claim 6, we have

e(m)−γ = βREt


e(m)




=mG̃︷ ︸︸ ︷
Ra(m) + G̃ξξξ

m







−γ

(84)

where mnext = R̃(m− c(m)) + ξξξ. The minimal MPC’s are obtained by letting m→∞.
Note that lim

mt→∞
mnext = ∞ almost surely and thus lim

mt→∞
et+1(mt+1) = κ almost surely.

Turning to the second term inside the marginal utility on the RHS, we can write

lim
m→∞

Ra(m) + G̃ξξξ
mt

= lim
m→∞

Ra(m)

m
+ lim

m→∞
G̃ξξξ
m

= R(1− κ) + 0,

(85)
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since G̃ξξξ is bounded. Thus, as m tends to ∞, we have

lim
m→∞

e(m)−γ = κ−γ = βRκ−γR−γ(1− κ)−γ. (86)

Re-arranging the terms above gives us κ = 1−ÞÞÞ/R = κ as required. Finally, analogously
following the steps before Equation (63) and noting κ = lim

m↓0
c(m)
m

, we can conclude

κ = ℘−1/γ(βR)−1/γR(1− κ)κ. Whence κ = 1− ℘1/γÞÞÞ/R = κ.

A.6 The Liquidity Constrained Solution as a Limit
Formally, suppose we change the description of the problem by making the following
two assumptions:

℘ = 0

ct ≤ mt,

and we designate the solution to this consumer’s problem c̀t(m). We will henceforth refer
to this as the problem of the ‘restrained’ consumer (and, to avoid a common confusion,
we will refer to the consumer as ‘constrained’ only in circumstances when the constraint
is actually binding).

Redesignate the consumption function that emerges from our original problem for a
given fixed ℘ as ct(m;℘) where we separate the arguments by a semicolon to distinguish
between m, which is a state variable, and ℘, which is not. The proposition we wish to
demonstrate is

lim
℘↓0

ct(m;℘) = c̀t(m). (87)

We will first examine the problem in period T − 1, then argue that the desired result
propagates to earlier periods. For simplicity, suppose that the interest, growth, and
time-preference factors are β = R = G = 1, and there are no permanent shocks, ψ = 1;
the results below are easily generalized to the full-fledged version of the problem.

The solution to the restrained consumer’s optimization problem can be obtained as
follows. Assuming that the consumer’s behavior in period T is given by cT (m) (in
practice, this will be cT (m) = m), consider the unrestrained optimization problem

à∗T−1(m) = argmax
a

{
u(m− a) +

∫ θ̄

θ

vT (a+ θ)dFθ
}
. (88)

As usual, the envelope theorem tells us that v′T (m) = u′(cT (m)) so the expected
marginal value of ending period T − 1 with assets a can be defined as

v̀′T−1(a) ≡
∫ θ̄

θ

u′(cT (a+ θ))dFθ,
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and the solution to (88) will satisfy

u′(m− a) = v̀′T−1(a). (89)

à∗T−1(m) therefore answers the question “With what level of assets would the restrained
consumer like to end period T − 1 if the constraint cT−1 ≤ mT−1 did not exist?” (Note
that the restrained consumer’s income process remains different from the process for
the unrestrained consumer so long as ℘ > 0.) The restrained consumer’s actual asset
position will be

àT−1(m) = max[0, à∗T−1(m)],

reflecting the inability of the restrained consumer to spend more than current resources,
and note (as pointed out by Deaton (1991)) that

m1
# =

(
v̀′T−1(0)

)−1/γ

is the cusp value of m at which the constraint makes the transition between binding and
non-binding in period T − 1.

Analogously to (89), defining

v′T−1(a;℘) ≡
[
℘a−γ + (1− ℘)

∫ θ̄

θ

(cT (a+ θ/(1− ℘)))−γdFθ
]
, (90)

the Euler equation for the original consumer’s problem implies

(m− a)−γ = v′T−1(a;℘) (91)

with solution a∗T−1(m;℘). Now note that for any fixed a > 0, lim℘↓0 v′T−1(a;℘) = v̀′T−1(a).
Since the LHS of (89) and (91) are identical, this means that lim℘↓0 a∗T−1(m;℘) =
à∗T−1(m). That is, for any fixed value of m > m1

# such that the consumer subject
to the restraint would voluntarily choose to end the period with positive assets, the
level of end-of-period assets for the unrestrained consumer approaches the level for the
restrained consumer as ℘ ↓ 0. With the same a and the same m, the consumers must
have the same c, so the consumption functions are identical in the limit.

Now consider values m ≤ m1
# for which the restrained consumer is constrained. It

is obvious that the baseline consumer will never choose a ≤ 0 because the first term
in (90) is lima↓0 ℘a−γ = ∞, while lima↓0 (m− a)−γ is finite (the marginal value of end-
of-period assets approaches infinity as assets approach zero, but the marginal utility of
consumption has a finite limit for m > 0). The subtler question is whether it is possible
to rule out strictly positive a for the unrestrained consumer.

The answer is yes. Suppose, for some m < m1
#, that the unrestrained consumer is

considering ending the period with any positive amount of assets a = δ > 0. For any such
δ we have that lim℘↓0 v′T−1(a;℘) = v̀′T−1(a). But by assumption we are considering a set
of circumstances in which à∗T−1(m) < 0, and we showed earlier that lim℘↓0 a∗T−1(m;℘) =
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à∗T−1(m). So, having assumed a = δ > 0, we have proven that the consumer would
optimally choose a < 0, which is a contradiction. A similar argument holds for m = m1

#.
These arguments demonstrate that for any m > 0, lim℘↓0 cT−1(m;℘) = c̀T−1(m) which

is the period T − 1 version of (87). But given equality of the period T − 1 consumption
functions, backwards recursion of the same arguments demonstrates that the limiting
consumption functions in previous periods are also identical to the constrained function.

Note finally that another intuitive confirmation of the equivalence between the two
problems is that our formula (65) for the maximal marginal propensity to consume
satisfies

lim
℘↓0

κ = 1,

which makes sense because the marginal propensity to consume for a constrained re-
strained consumer is 1 by our definitions of ‘constrained’ and ‘restrained.’

B Appendix for Section 3

B.1 Asymptotic Consumption Growth Factors
Proposition 4. We have lim

mt→∞
Et[ct+1/ct] = ÞÞÞ and lim

mt→0
Et[ct+1/ct] =∞.

Proof for Proposition 4. For consumption growth, as m→ 0 we have:

lim
mt→0

Et
[(

c(mt+1)

c(mt)

)
G̃t+1

]
> lim

mt→0
Et

[(
c(R̃t+1a(mt) + ξξξt+1)

κmt

)
G̃t+1

]

= ℘ lim
mt→0

Et

[(
c(R̃t+1a(mt))

κmt

)
Gt+1

]

+ (1− ℘) lim
mt→0

Et

[(
c(R̃t+1a(mt) + θt+1/(1− ℘))

κmt

)
G̃t+1

]

> (1− ℘) lim
mt→0

Et
[(

c(θt+1/(1− ℘))
κmt

)
G̃t+1

]

=∞

where the second-to-last line follows because limmt→0 Et
[(

c(R̃t+1a(mt))
κmt

)
G̃t+1

]
is positive,

and the last line follows because the minimum possible realization of θt+1 is θ > 0 so the
minimum possible value of expected next-period consumption is positive.

Next we establish the limit of the expected consumption growth factor as mt →∞:

lim
mt→∞

Et[ct+1/ct] = lim
mt→∞

Et[G̃t+1ct+1/ct].
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But

Et[G̃t+1ct+1/c̄t] ≤ Et[G̃t+1ct+1/ct] ≤ Et[G̃t+1c̄t+1/ct]

and

lim
mt→∞

G̃t+1c(mt+1)/c̄(mt) = lim
mt→∞

G̃t+1c̄(mt+1)/c(mt) = lim
mt→∞

G̃t+1mt+1/mt,

while (for convenience defining a(mt) = mt − c(mt)),

lim
mt→∞

G̃t+1mt+1/mt = lim
mt→∞

(
Ra(mt) + G̃t+1ξξξt+1

mt

)

= (Rβ)1/γ = ÞÞÞ

because lim
mt→∞

a′(m) = ÞÞÞ/R45 and G̃t+1ξξξt+1/mt ≤ (Gψ̄θ̄/(1 − ℘))/mt which goes to zero
as mt goes to infinity. Hence we have:

ÞÞÞ ≤ lim
mt→∞

Et[ct+1/ct] ≤ ÞÞÞ

so as cash goes to infinity, consumption growth approaches its value ÞÞÞ in the perfect
foresight model.

This appendix proves Theorems 3-4 and:

Lemma 4. If m̌ and m̂ both exist, then m̌ ≤ m̂.

B.2 Existence of Buffer Stock Target
B.2.1 Existence of Individual Buffer Stock Target

Proof of Theorem 3. First, observe that Et[mt+1/mt] =
Et((mt−c(mt))R̃t+1+ξξξt+1)

mt
. Note

that c is continuous since c is concave on R++ by Lemma 2. Thus for any convergent
sequence

{
mj
t

}∞
j=0

, with mj
t ∈ R++, (mj

t − c(mj
t))R̃t+1 + ξξξt+1 will be bounded above and

below. It follows that, using the Dominated Convergence Theorem, Et[mt+1/mt] will be
continuous in mt.

The remainder of the proof proceeds as follows. To establish Equation (28), we
will show (i) that there exists a point m̆t where Et[m̆⋆

t+1/m̆
⋆
t ] < 1 and (ii) a point m̀

where Et[m̀t+1/m̀t] > 1. By continuity of E[mt+1/mt] in mt and the Intermediate Value
Theorem, there will exist m̂ such that Et[m̂t+1/m̂t] = 1. In turn, to establish that m̂ is
a point of stability, Equation (29), we will show that (iii) Et[mt+1]−mt is decreasing.

Part (i). Existence of m̆t where Et[m̆t+1/m̆t] < 1.

45 lim
mt→∞

a(mt)/mt = 1− lim
mt→∞

c(mt)/mt = 1− lim
mt→∞

c′(mt) = ÞÞÞ/R.
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To proceed, first suppose return impatience holds and take the steps analogous to
those leading to Equation (92) in the proof of proof for Proposition 4, but dropping the
Gt+1 from the RHS:

lim
mt→∞

Et[mt+1/mt] = lim
mt→∞

Et

[
R̃t+1(mt − c(mt)) + ξξξt+1

mt

]

= Et[(R/G̃t+1)ÞÞÞ/R]
= Et[ÞÞÞ/G̃t+1]

< 1,

where the inequality follows from strong growth impatience. By continuity of
Et[mt+1/mt] in mt, there exists m̆t large enough such that Et[m̆t+1/m̆t] < 1.

Next, suppose return impatience fails. The fact that lim
mt→∞

c(mt)
mt

= 0 (Lemma 2) means

the limit of the RHS of (92) as mt → ∞ is ¯̃
R = Et[R̃t+1]. Equations (93)-(94) below

show that when strong growth impatience holds and return impatience fails ¯̃
R < 1.

Thus, we have lim
m→∞

E[mt+1/mt] < 1 whether the return impatience holds or fails.

Part (ii). Existence of m̀t > 1 where Et[m̀t+1/m̀t] > 1.
Analogous to Equation (92), the ratio of Et[mt+1] to mt is unbounded above as mt → 0

because lim
mt→0

E[mt+1] > 0. Thus, if Et[mt+1/mt] is continuous in mt, and takes on values
above and below one at m̀t and m̆t, by the Intermediate Value Theorem, there must be
at least one point at which it is equal to one.

Part (iii). Et[mt+1]−mt is strictly decreasing.
Finally to show Et[mt+1]−mt is strictly decreasing mt, define ζζζ(mt) : = Et[mt+1]−mt

and note that:
ζζζ(mt) < 0↔ Et[mt+1/mt] < 1

ζζζ(mt) = 0↔ Et[mt+1/mt] = 1

ζζζ(mt) > 0↔ Et[mt+1/mt] > 1, ,

so that ζζζ(m̂) = 0. Our goal is to prove that ζζζ(•) is strictly decreasing on (0,∞). Let ∆ϵ

be the finite forward difference for spacing ϵ > 0. Fixing ϵ > 0, we will have:

∆ϵζζζ(mt) = Et
[
∆ϵ

(
R̃(mt − c(mt)) + ξξξt+1 −mt

)]

=
¯̃
R (ϵ−∆ϵc(mt))− ϵ = ϵ

(
¯̃
R

[
1− ∆ϵc(mt)

ϵ

]
− 1

)
.

Notice that ∆ϵc(mt)
ϵ
≤ c(mt)

mt
< 1 since c(mt)

mt
is decreasing in mt by Claim 8 in Appendix F.

Consider the case when return impatience holds. Equation (17) and Lemma 2 indicate
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0 < κ ≤ c(mt)
mt

< 1. It follows that:

¯̃
R

[
1− ∆ϵc

′(mt)

ϵ

]
− 1 ≤ ¯̃

R(1− (1−ÞÞÞ/R)︸ ︷︷ ︸
κ

)− 1

=
¯̃
RÞÞÞ/R− 1

= Et
[

R

Gψt+1

ÞÞÞ
R

]
− 1

= Et
[ ÞÞÞ
Gψt+1

]

︸ ︷︷ ︸
=ÞÞÞ/GE[ψ−1]

−1

which is negative because the strong growth impatience saysÞÞÞ/GE[ψ−1] < 1. Conversely,
when return impatience holds fails, recall lim

mt→∞
c(mt)
mt

= 0. This means ∆ϵζζζ(mt) from (92)
is guaranteed to be negative if:

¯̃
R = Et

[
R

Gψt+1

]
< 1. (92)

But the combination of the strong growth impatience holding and the return impatience
failing can be written:

ÞÞÞ/GE[ψ−1]︷ ︸︸ ︷
Et
[ ÞÞÞ
Gψt+1

]
< 1 <

ÞÞÞ/R︷︸︸︷
ÞÞÞ
R
,

(93)

and multiplying all three elements by R/ÞÞÞ gives:

Et
[

R

Gψt+1

]
< R/ÞÞÞ < 1, (94)

which satisfies our requirement in (92), thus completing the proof.

B.2.2 Existence of Pseudo-Steady-State

Proof of Theorem 4. Since by assumption 0 < ψ ≤ ψt+1 ≤ ψ̄ < ∞, our proof
in B.2.1 that demonstrated existence and continuity of E[mt+1/mt] implies existence
and continuity of E[ψt+1mt+1/mt].

Part (i). Existence of a stable point
Since by assumption 0 < ψ ≤ ψt+1 ≤ ψ̄ < ∞, our proof in Subsection B.2.1 that the

ratio of E[mt+1] to mt is unbounded as mt → 0 implies that the ratio E[ψt+1mt+1] to mt

is unbounded as mt → 0. The limit of the expected ratio as mt →∞ goes to infinity is
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can be found as follows:

lim
mt→∞

Et[ψt+1mt+1/mt] = lim
mt→∞

Et



G̃t+1

(
(R/G̃t+1)a(mt) + ξξξt+1

)
/G

mt




= lim
mt→∞

Et
[
(R/G)a(mt) + ψt+1ξξξt+1

mt

]

= lim
mt→∞

[
(R/G)a(mt) + 1

mt

]

= (R/G)ÞÞÞ/R
= ÞÞÞ/G
< 1,

where the last two lines are merely a restatement of growth impatience.
To conclude Part (i) of the proof, the Intermediate Value Theorem says that if

E[ψt+1mt+1/mt] is continuous, and takes on values above and below 1, there must be at
least one point at which it is equal to one.

Part (ii). Et[ψt+1mt+1]−mt is monotonically decreasing.
Define ζζζ(mt) : = Et[ψt+1mt+1]−mt and note that:

ζζζ(mt) < 0↔ Et[ψt+1mt+1/mt] < 1

ζζζ(mt) = 0↔ Et[ψt+1mt+1/mt] = 1

ζζζ(mt) > 0↔ Et[ψt+1mt+1/mt] > 1,

so that ζζζ(m̂) = 0. Our goal is to prove that ζζζ(•) is strictly decreasing on (0,∞). Letting
∆ϵ be the forward difference operator, we have:

∆ϵζζζ(mt) = E
[
∆ϵ

(
R

G (mt − c(mt)) + ψt+1ξξξt+1 −mt

)]

=
R

G (ϵ−∆ϵc
′(mt))− ϵ = ϵ

(
R

G

[
1− ∆ϵc(mt)

ϵ

]
− 1

)
.

for any given ϵ > 0. Notice that ∆ϵc′(mt)
ϵ

≤ c(mt)
mt

< 1 since c(mt)
mt

is decreasing in mt by
Claim 8 in Appendix. Now, we show that ζζζ(m) is decreasing when return impatience
holds and when return impatience fails. When return impatience holds, Equation (17)
and Lemma 2 indicate that κ > 0 and 0 < κ ≤ c(mt)

mt
< 1. It follows that:

R

G (1− c′(mt))− 1 <
R

G (1− (1−ÞÞÞ/R)︸ ︷︷ ︸
κ

)− 1

= (R/G)ÞÞÞ/R− 1,
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which is negative because growth impatience says ÞÞÞ/G < 1. Conversely, when return
impatience holds fails, recall lim

mt→∞
c(mt)
mt

= 0. In turn, this means ∆ϵζζζ(mt) from (95) is
guaranteed to be negative if:

(R/G) < 1. (95)

But we showed in Section 2.3.1, Equation (50), that the only circumstances under
which the problem has a non-degenerate solution while return impatience fails were
ones where the finite limiting human wealth also fails. Thus, (R/G) < 1, completing the
proof.

C Appendix for Section 4

C.1 Growth Impatience Implies Harmenberg Impatience
We show here that growth impatience implies the condition imposed by Harmenberg
(2021b) to guarantee the existence of a permanent income weighted distribution of
normalized market resources. Letting f denote the density of the permanent income
shock ψ, the impatience condition imposed by Harmenberg (2021b) is

log (ÞÞÞ) <
∫

log(Gψ)ψf(ψ) dψ. (96)

Claim 7. If growth impatience holds, then (96) holds.

Proof. Since ψ 7→ log(Gψ)ψ is convex, Jensen’s inequality implies
∫

log(Gψ)ψf(ψ) dψ ≥ log(GEψ)Eψ = log(G) (97)

Since growth impatience implies G > ÞÞÞ and log is strictly monotone increasing, the
result follows.

C.2 Apparent Balanced Growth in c̄ and cov(c,p)

Section 4.2 demonstrates some propositions under the assumption that, when an econ-
omy satisfies the GIC, there will be constant growth factors Ωc̄ and Ωcov respectively for
c̄ (the average value of the consumption ratio) and cov(c,p). In the case of a Szeidl-
invariant economy, the main text shows that these are Ωc̄ = 1 and Ωcov = G. If the
economy is Harmenberg- but not Szeidl-invariant, no proof is offered that these growth
factors will be constant.
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C.3 log c and log cov(c,p) Grow Linearly
Figures 9 and 10 plot the results of simulations of an economy that satisfies
Harmenberg- but not Szeidl-invariance with a population of 4 million agents over
the last 1000 periods (of a 2000 period simulation).46 The first figure shows that
log c̄ increases apparently linearly. The second figure shows that log(− cov(c,p))
also increases apparently linearly. (These results are produced by the notebook
ApndxBalancedGrowthcNrmAndCov.ipynb).

46For an exposition of our implementation of Harmenberg’s method, see this supplemental appendix.
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(see (2))

D Appendix for Section 5
In this appendix, we use the following acronyms to refer to the consumer patience
conditions identified in Section 2.2 using the acronyms from Table 3.

We briefly interpret FVAC before turning to how all the conditions relate under
uncertainty. Analogously to (98), the value for a consumer who spent exactly their
permanent income every period would reflect the product of the expectation of the
(independent) future shocks to permanent income:

= u(p t)

(
1− (βG1−γE[ψ1−γ])

T−t+1

1− βG1−γE[ψ1−γ]

)
,

The function vt will be finite as T approaches∞ if the FVAC holds. In the case without
uncertainty, Because u(xy) = x1−γu(y), the value the consumer would achieve is:

vautarky
t = u(p t) + βu(p tG) + β2u(p tG2) + . . .

= u(p t)

(
1− (βG1−γ)T−t+1

1− βG1−γ

)

which (for G > 0) asymptotes to a finite number as n, with n = T − t, approaches +∞.

D.1 Perfect Foresight Unconstrained Solution
The first result relates to the perfect foresight case without liquidity constraints.

Proof of Proposition 1. Consider a sequence of consumption {cT−n}Tn=t and a se-
quence of income {pT−n}Tn=t and let PDVT

t (c) and PDVT
t (p) denote the present dis-

counted value of the consumption sequence and permanent income sequence respectively.
The dynamic budget constraint, strictly positive marginal utility, and the can’t-die-in-
debt condition, Equation (1), imply an exactly-holding intertemporal budget constraint
(IBC):

PDVT
t (c) =

bt︷ ︸︸ ︷
m t − p t+

ht︷ ︸︸ ︷
PDVT

t (p),
(98)

where b is beginning-of-period ‘market’ balances; with R̃ : = R/G ‘human wealth’ can
be written as:

h t = p t + R̃−1p t + R̃−2p t + · · ·+ R̃t−Tp t

=

(
1− R̃−(T−t+1)

1− R̃−1

)

︸ ︷︷ ︸
≡ht

p t.
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Let h denote the limiting value of normalized human wealth as the planning horizon
recedes, we have h : = lim

n→∞
htn .

Next, since consumption is growing by ÞÞÞ but discounted by R:

PDVT
t (c) =

(
1−ÞÞÞ/RT−t+1

1−ÞÞÞ/R

)
ct

from which the IBC (98) implies

ct =

≡κt︷ ︸︸ ︷(
1−ÞÞÞ/R

1−ÞÞÞ/RT−t+1

)
(b t + h t)

(99)

defining a normalized finite-horizon perfect foresight consumption function:

c̄T−n(mT−n) = (

≡bT−n︷ ︸︸ ︷
mT−n − 1+hT−n)κt−n

where κt is the marginal propensity to consume (MPC). (The overbar signifies that c̄ will
be an upper bound as we modify the problem to incorporate constraints and uncertainty;
analogously, κ is the MPC’s lower bound).

The horizon-exponentiated term in the denominator of (99) is why, for κ to be strictly
positive as n goes to infinity, we must impose the RIC. The RIC thus implies that the
consumer cannot be so pathologically patient as to wish, in the limit as the horizon
approaches infinity, to spend nothing today out of an increase in current wealth (the
RIC rules out the degenerate limiting solution c̄(m) = 0).

Given that the RIC holds, and (as before) defining limiting objects by the absence of
a time subscript, the limiting upper bound consumption function will be

c̄(m) = (m+ h− 1)κ, (100)

and so in order to rule out the degenerate limiting solution c̄(m) = ∞ we need h
to be finite; that is, we must impose the Finite Human Wealth Condition (FHWC),
Assumption (I.3).

D.2 Perfect Foresight Liquidity Constrained Solutions
Under perfect foresight in the presence of a liquidity constraint requiring b ≥ 0, this
appendix taxonomizes the varieties of the limiting consumption function c̀(m) that arise
under various parametric conditions.

Results are summarized in table 5.
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D.2.1 If GIC Fails

A consumer is ‘growth patient’ if the perfect foresight growth impatience condition fails
(���GIC, 1 < ÞÞÞ/G). Under ���GIC the constraint does not bind at the lowest feasible value
of mt = 1 because 1 < (Rβ)1/γ/G implies that spending everything today (setting
ct = mt = 1) produces lower marginal utility than is obtainable by reallocating a
marginal unit of resources to the next period at return R:47

1 < (Rβ)1/γG−1

1 < RβG−γ
u′(1) < Rβu′(G).

Similar logic shows that under these circumstances the constraint will never bind at
m = 1 for a constrained consumer with a finite horizon of n periods, so for m ≥ 1
such a consumer’s consumption function will be the same as for the unconstrained case
examined in the main text.

RIC fails, FHWC holds. If the RIC fails (1 < ÞÞÞ/R) while the finite human wealth
condition holds, the limiting value of this consumption function as n → ∞ is the
degenerate function

c̀T−n(m) = 0(bt + h). (101)

(that is, consumption is zero for any level of human or nonhuman wealth).
RIC fails, FHWC fails. ����FHWC implies that human wealth limits to h = ∞ so the

consumption function limits to either c̀T−n(m) = 0 or c̀T−n(m) = ∞ depending on the
relative speeds with which the MPC approaches zero and human wealth approaches∞.48

Thus, the requirement that the consumption function be nondegenerate implies that
for a consumer satisfying ���GIC we must impose the RIC (and the FHWC can be shown
to be a consequence of ���GIC and RIC). In this case, the consumer’s optimal behavior
is easy to describe. We can calculate the point at which the unconstrained consumer
would choose c = m from Equation (16):

m# = (m# − 1 + h)κ

m#(1− κ) = (h− 1)κ

m# = (h− 1)

(
κ

1− κ

) (102)

which (under these assumptions) satisfies 0 < m# < 1.49 For m < m# the unconstrained
consumer would choose to consume more than m; for such m, the constrained consumer

47The point at which the constraint would bind (if that point could be attained) is the m = c for
which u′(c#) = Rβu′(G) which is c# = G/(Rβ)1/γ and the consumption function will be defined by
c̀(m) = min[m, c# + (m− c#)κ].

48The knife-edge case is where ÞÞÞ = G, in which case the two quantities counterbalance and the
limiting function is c̀(m) = min[m, 1].

49Note that 0 < m# is implied by RIC and m# < 1 is implied by ���GIC.
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is obliged to choose c̀(m) = m.50 For any m > m# the constraint will never bind and the
consumer will choose to spend the same amount as the unconstrained consumer, c̄(m).

(Stachurski and Toda (2019) obtain a similar lower bound on consumption and use it
to study the tail behavior of the wealth distribution.)

D.2.2 If GIC Holds

Imposition of the GIC reverses the inequality in (101), and thus reverses the conclusion:
A consumer who starts withmt = 1 will desire to consume more than 1. Such a consumer
will be constrained, not only in period t, but perpetually thereafter.

Now define bn# as the bt such that an unconstrained consumer holding bt = bn# would
behave so as to arrive in period t + n with bt+n = 0 (with b0# trivially equal to 0); for
example, a consumer with bt−1 = b1# was on the ‘cusp’ of being constrained in period
t − 1: Had bt−1 been infinitesimally smaller, the constraint would have been binding
(because the consumer would have desired, but been unable, to enter period t with
negative, not zero, b). Given the GIC, the constraint certainly binds in period t (and
thereafter) with resources of mt = m0

# = 1 + b0# = 1: The consumer cannot spend
more (because constrained), and will not choose to spend less (because impatient), than
ct = c0# = 1.

We can construct the entire ‘prehistory’ of this consumer leading up to t as follows.
Maintaining the assumption that the constraint has never bound in the past, c must
have been growing according to ÞÞÞ/G, so consumption n periods in the past must have
been

cn# = ÞÞÞ/G−nct = ÞÞÞ/G−n. (103)

The PDV of consumption from t− n until t can thus be computed as

Ct
t−n = ct−n(1 +ÞÞÞ/R+ · · ·+ (ÞÞÞ/R)n)

= cn#(1 +ÞÞÞ/R+ · · ·+ÞÞÞ/Rn)

= ÞÞÞ/G−n
(
1−ÞÞÞ/Rn+1

1−ÞÞÞ/R

)

=

(ÞÞÞ/G−n −ÞÞÞ/R
1−ÞÞÞ/R

)

and note that the consumer’s human wealth between t − n and t (the relevant time
horizon, because from t onward the consumer will be constrained and unable to access
post-t income) is

hn# = 1 + · · ·+ R̃−n (104)

50As an illustration, consider a consumer for whomÞÞÞ = 1, R = 1.01 and G = 0.99. This consumer will
save the amount necessary to ensure that growth in market wealth exactly offsets the decline in human
wealth represented by G < 1; total wealth (and therefore total consumption) will remain constant, even
as market wealth and human wealth trend in opposite directions.
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while the intertemporal budget constraint says

Ct
t−n = bn# + hn#

from which we can solve for the bn# such that the consumer with bt−n = bn# would
unconstrainedly plan (in period t− n) to arrive in period t with bt = 0:

bn# = Ct
t−n −

hn#︷ ︸︸ ︷(
1− R̃−(n+1)

1− R̃−1

)
.

(105)

Defining mn
# = bn# + 1, consider the function c̀(m) defined by linearly connecting the

points {mn
#, c

n
#} for integer values of n ≥ 0 (and setting c̀(m) = m for m < 1). This

function will return, for any value of m, the optimal value of c for a liquidity constrained
consumer with an infinite horizon. The function is piecewise linear with ‘kink points’
where the slope discretely changes; for infinitesimal ϵ the MPC of a consumer with assets
m = mn

# − ϵ is discretely higher than for a consumer with assets m = mn
# + ϵ because

the latter consumer will spread a marginal dollar over more periods before exhausting
it.

In order for a unique consumption function to be defined by this sequence (105) for
the entire domain of positive real values of b, we need bn# to become arbitrarily large
with n. That is, we need

lim
n→∞

bn# =∞. (106)

If FHWC Holds The FHWC requires R̃−1 < 1, in which case the second term in (105)
limits to a constant as n→∞, and (106) reduces to a requirement that

lim
n→∞

(ÞÞÞ/G−n − (ÞÞÞ/R/ÞÞÞ/G)nÞÞÞ/R
1−ÞÞÞ/R

)
=∞

lim
n→∞

(
ÞÞÞ/G−n − R̃−nÞÞÞ/R

1−ÞÞÞ/R

)
=∞

lim
n→∞

( ÞÞÞ/G−n
1−ÞÞÞ/R

)
=∞.

Given the GIC ÞÞÞ/G−1 > 1, this will hold iff the RIC holds, ÞÞÞ/R < 1. But given that
the FHWC R > G holds, the GIC is stronger (harder to satisfy) than the RIC; thus,
the FHWC and the GIC together imply the RIC, and so a well-defined solution exists.
Furthermore, in the limit as n approaches infinity, the difference between the limiting
constrained consumption function and the unconstrained consumption function becomes
vanishingly small, because the date at which the constraint binds becomes arbitrarily
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distant, so the effect of that constraint on current behavior shrinks to nothing. That is,

lim
m→∞

c̀(m)− c̄(m) = 0. (107)

If FHWC Fails If the FHWC fails, matters are a bit more complex.
Given failure of FHWC, (106) requires

lim
n→∞

(
R̃−nÞÞÞ/R−ÞÞÞ/G−n

ÞÞÞ/R− 1

)
+

(
1− R̃−(n+1)

R̃−1 − 1

)
=∞

lim
n→∞

(
ÞÞÞ/R

ÞÞÞ/R− 1
− R̃−1

R̃−1 − 1

)
R̃−n −

( ÞÞÞ/G−n
ÞÞÞ/R− 1

)
=∞

If RIC Holds. When the RIC holds, rearranging (108) gives

lim
n→∞

( ÞÞÞ/G−n
1−ÞÞÞ/R

)
− R̃−n

(
ÞÞÞ/R

1−ÞÞÞ/R +
R̃−1

R̃−1 − 1

)
=∞

and for this to be true we need

ÞÞÞ/G−1 > R̃−1

G/ÞÞÞ > G/R
1 > ÞÞÞ/R

which is merely the RIC again. So the problem has a solution if the RIC holds. Indeed,
we can even calculate the limiting MPC from

lim
n→∞

κn# = lim
n→∞

(
cn#
bn#

)
(108)

which with a bit of algebra51 can be shown to asymptote to the MPC in the perfect
foresight model:52

lim
m→∞

κ̀κκ(m) = 1−ÞÞÞ/R. (110)

51Calculate the limit of
( ÞÞÞ/G−n
ÞÞÞ/G−n/(1−ÞÞÞ/R)− (1− R̃−1R̃−n)/(1− R̃−1)

)
=

(
1

1/(1−ÞÞÞ/R) + R̃−nR̃−1/(1− R̃−1)

)
(109)

52For an example of this configuration of parameters, see the notebook doApndxLiqConstr.nb in the
Mathematica software archive.

70



Appendices

If RIC Fails. Consider now the ���RIC case, ÞÞÞ/R > 1. We can rearrange (108) as

lim
n→∞

(
ÞÞÞ/R(R̃−1 − 1)

(R̃−1 − 1)(ÞÞÞ/R− 1)
− R̃−1(ÞÞÞ/R− 1)

(R̃−1 − 1)(ÞÞÞ/R− 1)

)
R̃−n −

( ÞÞÞ/G−n
ÞÞÞ/R− 1

)
=∞.(111)

which makes clear that with����FHWC⇒ R̃−1 > 1 and���RIC⇒ ÞÞÞ/R > 1 the numerators and
denominators of both terms multiplying R̃−n can be seen transparently to be positive.
So, the terms multiplying R̃−n in (108) will be positive if

ÞÞÞ/RR̃−1 −ÞÞÞ/R > R̃−1ÞÞÞ/R− R̃−1

R̃−1 > ÞÞÞ/R
G > ÞÞÞ

which is merely the GIC which we are maintaining. So the first term’s limit is +∞. The
combined limit will be +∞ if the term involving R̃−n goes to +∞ faster than the term
involving −ÞÞÞ/G−n goes to −∞; that is, if

R̃−1 > ÞÞÞ/G−1

G/R > G/ÞÞÞ
ÞÞÞ/R > 1

which merely confirms the starting assumption that the RIC fails.
What is happening here is that the cn# term is increasing backward in time at rate

dominated in the limit by G/ÞÞÞ while the b# term is increasing at a rate dominated by
G/R term and

G/R > G/ÞÞÞ (112)

because ���RIC⇒ ÞÞÞ > R.
Consequently, while limn→∞ bn# = ∞, the limit of the ratio cn#/b

n
# in (108) is zero.

Thus, surprisingly, the problem has a well defined solution with infinite human wealth
if the RIC fails. It remains true that ���RIC implies a limiting MPC of zero,

lim
m→∞

κ̀κκ(m) = 0, (113)

but that limit is approached gradually, starting from a positive value, and consequently
the consumption function is not the degenerate c̀(m) = 0. (Figure 11 presents an
example for γ = 2, R = 0.98, β = 1.00, G = 0.99; note that the horizontal axis is bank
balances b = m − 1; the part of the consumption function below the depicted points is
uninteresting — c = m — so not worth plotting).

We can summarize as follows. Given that the GIC holds, the interesting question is
whether the FHWC holds. If so, the RIC automatically holds, and the solution limits into
the solution to the unconstrained problem as m→∞. But even if the FHWC fails, the
problem has a well-defined and nondegenerate solution, whether or not the RIC holds.
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Figure 11 Appendix: Nondegenerate c Function with ����FHWC and ���RIC

Although these results were derived for the perfect foresight case, we know from work
elsewhere in this paper and in other places that the perfect foresight case is an upper
bound for the case with uncertainty. If the upper bound of the MPC in the perfect
foresight case is zero, it is not possible for the upper bound in the model with uncertainty
to be greater than zero, because for any κ > 0 the level of consumption in the model
with uncertainty would eventually exceed the level of consumption in the absence of
uncertainty.

Ma and Toda (2020) characterize the limits of the MPC in a more general framework
that allows for capital and labor income risks in a Markovian setting with liquidity
constraints, and find that in that much more general framework the limiting MPC is
also zero.

E Relational Diagrams for the Inequality Conditions
This appendix explains in detail the paper’s ‘inequalities’ diagrams (Figures 7, 8).

E.1 The Unconstrained Perfect Foresight Model
A simple illustration is presented in Figure 12, whose three nodes represent values of
the absolute patience factor ÞÞÞ, the permanent-income growth factor G, and the riskfree
interest factor R. The arrows represent imposition of the labeled inequality condition
(like, the uppermost arrow, pointing fromÞÞÞ to G, reflects imposition of the GIC condition
(clicking GIC should take you to its definition; definitions of other conditions are also
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ÞÞÞ Γ((Rβ)1/ρ ≡)

R

̸=

GIC(≡ ÞÞÞ < Γ)

(ÞÞÞ < R ≡) RIC FHWC (≡ Γ < R)

Figure 12 Appendix: Inequality Conditions for Perfect Foresight Model
(Start at a node and follow arrows)

linked below)).53 Annotations inside parenthetical expressions containing ≡ are there
to make the diagram readable for someone who may not immediately remember terms
and definitions from the main text. (Such a reader might also want to be reminded that
R, β, and Γ are all in R++, and that γ > 1).

Navigation of the diagram is simple: Start at any node, and deduce a chain of
inequalities by following any arrow that exits that node, and any arrows that exit from
successive nodes. Traversal must stop upon arrival at a node with no exiting arrows.
So, for example, we can start at the ÞÞÞ node and impose the GIC and then the FHWC,
and see that imposition of these conditions allows us to conclude that ÞÞÞ < R.

One could also imposeÞÞÞ < R directly (without imposing GIC and FHWC) by following
the downward-sloping diagonal arrow exiting ÞÞÞ. Although alternate routes from one
node to another all justify the same core conclusion (ÞÞÞ < R, in this case), ̸= symbol
in the center is meant to convey that these routes are not identical in other respects.
This notational convention is used in category theory diagrams,54 to indicate that the
diagram is not commutative.55

Negation of a condition is indicated by the reversal of the corresponding arrow. For
example, negation of the RIC, ���RIC ≡ ÞÞÞ > R, would be represented by moving the
arrowhead from the bottom right to the top left of the line segment connecting ÞÞÞ and
R.

If we were to start at R and then impose ����FHWC, that would reverse the arrow
connecting R and G, but the G node would then have no exiting arrows so no further
deductions could be made. However, if we also reversed GIC (that is, if we imposed
���GIC), that would take us to the ÞÞÞ node, and we could deduce R > ÞÞÞ. However, we would
have to stop traversing the diagram at this point, because the arrow exiting from the ÞÞÞ
node points back to our starting point, which (if valid) would lead us to the conclusion

53For convenience, the equivalent (≡) mathematical statement of each condition is expressed nearby
in parentheses.

54For a popular introduction to category theory, see Riehl (2017).
55But the rest of our notation does not necessarily abide by the other conventions of category theory

diagrams.
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that R > R. Thus, the reversal of the two earlier conditions (imposition of ����FHWC and
���GIC) requires us also to reverse the final condition, giving us ���RIC.56

Under these conventions, Figure 7 in the main text presents a modified version of the
diagram extended to incorporate the PFFVAC.

This diagram can be interpreted, for example, as saying that, starting at the ÞÞÞ node,
it is possible to derive the PFFVAC57 by imposing both the GIC and the FHWC; or by
imposing RIC and ����FHWC. Or, starting at the G node, we can follow the imposition of
the FHWC (twice — reversing the arrow labeled ����FHWC) and then ���RIC to reach the
conclusion that ÞÞÞ < G. Algebraically,

FHWC : G < R

���RIC : R < ÞÞÞ
G < ÞÞÞ

(114)

which leads to the negation of both of the conditions leading into ÞÞÞ. ���GIC is obtained
directly as the last line in (114) and (((((PFFVAC follows if we start by multiplying the
Return Patience Factor (RPF=ÞÞÞ/R) by the FHWF (=G/R) raised to the power 1/γ−1,
which is negative since we imposed γ > 1. FHWC implies FHWF < 1 so when FHWF
is raised to a negative power the result is greater than one. Multiplying the RPF (which
exceeds 1 because ���RIC) by another number greater than one yields a product that must
be greater than one:

1 <

>1 from��RIC︷ ︸︸ ︷(
(Rβ)1/γ

R

) >1 from FHWC︷ ︸︸ ︷
(G/R)1/γ−1

1 <

(
(Rβ)1/γ

(R/G)1/γRG/R

)

R1/γG1−1/γ = (R/G)1/γG < ÞÞÞ

which is one way of writing (((((PFFVAC.
The complexity of this algebraic calculation illustrates the usefulness of the diagram,

in which one merely needs to follow arrows to reach the same result.
After the warmup of constructing these conditions for the perfect foresight case, we

can represent the relationships between all the conditions in both the perfect foresight
case and the case with uncertainty as shown in Figure 8 in the paper (reproduced here).

Finally, the next diagram substitutes the values of the various objects in the diagram

56The corresponding algebra is
����FHWC : R < G

���GIC : G < ÞÞÞ
⇒���RIC : R < ÞÞÞ,

.
57in the form ÞÞÞ < (R/G)1/γG
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ÞÞÞ Γ

R
R1/ρΓ1−1/ρ
︸ ︷︷ ︸
PFVAF

℘1/ρÞÞÞ

Γ

R1/ρΓ1−1/ρ
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Γ ≡
ψΓ
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b
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se
Γ
<

Γ

FVAC

Figure 13 Appendix: Relation of All Inequality Conditions

under the baseline parameter values and verifies that all of the asserted inequality
conditions hold true.

F Additional Standard Results
Proposition 5. Let f : R++ → R+ be a continuous function. Consider sequences xn in
R++ and fn(xn) in R+. If fn(xn)→ f(x) as n→∞, then xn → x as n→∞.

Proof. Given that f is continuous at x (with x ∈ R++), for every ϵ > 0, there exists a
δ > 0 such that for all y in R++ with |y − x| < δ, we have |f(y)− f(x)| < ϵ.

Given fn(xn) → f(x), for the above ϵ, there exists an N such that for all n > N ,
|fn(xn)− f(x)| < ϵ.

Assume for the sake of contradiction that xn doesn’t converge to x. This implies that
there exists a δ > 0 such that for infinitely many terms of the sequence xn, |xn−x| ≥ δ.

By the continuity of f at x, if |xn−x| ≥ δ for infinitely many n, then |fn(xn)−f(x)| ≥ ϵ
for those n, contradicting our assumption that fn(xn)→ f(x).

Therefore, our assumption for contradiction is false, and it follows that xn → x as
n→∞.

Fact 1. Let g : X → R+ be a continuous function, where X ⊆ Rn is an open convex
set. Define the weighted supremum norm ∥ · ∥g of a real-valued function f : X → R by

∥f∥g := sup
x∈X

|f(x)|
g(x)

. (115)

75



Appendices

0.999 1.030

1.04
1.035︸ ︷︷ ︸

PFVAF

0.072

1.02

1.030

GIC

RIC PFFVAC FHWC

FHWC

because ℘ < 1

WRIC

because ψ
<
1 and

Γ ≡
ψΓ

GIC-Mod

b
eca

u
se

Γ
<

Γ

FVAC

Figure 14 Appendix: Numerical Relation of All Inequality Conditions

If limn→∞ ∥fn − f⋆∥g = 0, fn converges to f⋆ uniformly on compact sets.

Proof. Let X̃ be an arbitrary compact subset of X. Since X̃ is compact, there exists a
positive lower bound for g on this subset, denoted as

ḡ = min
x∈X̃

g(x) > 0. (116)

Hence, on X̃, if limn→∞ ∥fn − f⋆∥g = 0, then limn→∞ ∥fn − f⋆∥∞ = 0 on X̃, where ∥ · ∥∞
denotes the supremum norm.

Now, let K be a compact subset of X. Given the continuity of g, there exists a positive
maximum value for g on K, denoted as MK . Then, we have

sup
x∈K
|fn(x)− f(x)| ≤MK sup

x∈K

|fn(x)− f(x)|
g(x)

≤MK sup
x∈X

|fn(x)− f(x)|
g(x)

. (117)

Thus, limn→∞ ∥fn− f∥=0 implies that fn converges uniformly to f on the compact set K.
It’s also worth noting that the convexity and openness of X aren’t strictly necessary for
this argument.

Fact 2. Let {fn} be a sequence of continuous functions defined on a subset of the real
line and converging uniformly to a functionf on compact sets. If{xn} is a convergent
sequence of real numbers with limit x, then fn(xn) converges to f(x).

Proof. Let X̃ be an arbitrary compact subset of X. Since X̃ is compact, there exists a
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positive lower bound for g on this subset, denoted as

ḡ = min
x∈X̃

g(x) > 0. (118)

Hence, on X̃, if limn→∞ ∥fn − f⋆∥g = 0, then limn→∞ ∥fn − f⋆∥∞ = 0 on X̃, where ∥ · ∥∞
denotes the supremum norm.

Now, let K be a compact subset of X. Given the continuity of g, there exists a positive
maximum value for g on K, denoted as MK . Then, we have

sup
x∈K
|fn(x)− f(x)| ≤MK sup

x∈K

|fn(x)− f(x)|
g(x)

≤MK sup
x∈X

|fn(x)− f(x)|
g(x)

. (119)

Thus, limn→∞ ∥fn− f∥=0 implies that fn converges uniformly to f on the compact set K.
It’s also worth noting that the convexity and openness of X aren’t strictly necessary for
this argument.
Claim 8. If f is convex and f < 0 on (0, λ), then f(s)

s
is increasing on (0, λ).

Proof. Let f be convex on (0, λ) and f < 0 on (0, λ). Let x1 and x2 be two points in
(0, λ). Choose 0 < α < x1. Then, any point (in particular, x1) in (α, x2) can be written
as x1 = tα + (1− t)x2 for some 0 < t < 1.

Now, define a new function F on [α, x2] as:

F (x) = f(x)− f(α).

Since f is convex, F (x) is also convex on [α, x2]. To see this, observe that:

F (tα+(1−t)x2) = f(tα+(1−t)x2)−f(α) ≤ tf(α)+(1−t)f(x2)−f(α) = tF (α)+(1−t)F (x2).

Since F (α) = 0, the inequality simplifies to F (x1) ≤ (1− t)F (x2). This implies that F (s)
s

is increasing. And thus, if y1 ≤ y2, then:

F (y1)

y1
≤ F (y2)

y2
.

Now, using the definition of F (x), we have:

f(y1)

y1
=
F (y1)

y1
+

f(α)

y1
.

Similarly, for y2:
f(y2)

y2
=
F (y2)

y2
+

f(α)

y2
.

Since F (y1)
y1
≤ F (y2)

y2
and f(α) < 0, we conclude that:

f(y1)

y1
≤ f(y2)

y2
.
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Thus, f(s)
s

is increasing on (0, λ), completing the proof.
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Table 5 Appendix: Perfect Foresight Liquidity Constrained Taxonomy

For constrained c̀ and unconstrained c̄ consumption functions
Main Condition

Subcondition Math Outcome, Comments or Results
���GIC 1 < ÞÞÞ/G Constraint never binds for m ≥ 1

and RIC ÞÞÞ/R < 1 FHWC holds (R > G);
c̀(m) = c̄(m) for m ≥ 1

and ���RIC 1 < ÞÞÞ/R c̀(m) is degenerate: c̀(m) = 0
GIC ÞÞÞ/G < 1 Constraint binds in finite time ∀ m

and RIC ÞÞÞ/R < 1 FHWC may or may not hold
limm↑∞ c̄(m)− c̀(m) = 0
limm↑∞ κ̀κκ(m) = κ

and ���RIC 1 < ÞÞÞ/R ����FHWC
limm↑∞ κ̀κκ(m) = 0

Conditions are applied from left to right; for example, the second row indicates conclusions in
the case where ���GIC and RIC both hold, while the third row indicates that when the GIC and
the RIC both fail, the consumption function is degenerate; the next row indicates that whenever
the GIC holds, the constraint will bind in finite time.
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