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ABSTRACT

In a risky world, a pessimist assumes the worst will happen. Someone who ignores risk altogether is an
optimist. Consumption decisions are mathematically simple for both the pessimist and the optimist because
both behave as if they live in a riskless world. A consumer who is a realist (that is, who wants to respond
optimally to risk) faces a much more difficult problem, but (under standard conditions) will choose a level of
spending somewhere between that of the pessimist and the optimist. We use this fact to redefine the space

in which the realist searches for optimal consumption rules.

The resulting solution accurately represents

the numerical consumption rule over the entire interval of feasible wealth values with remarkably few

computations.

Keywords Dynamic Stochastic Optimization

1 INTRODUCTION

Solving a consumption, investment, portfolio choice, or similar
intertemporal optimization problem using numerical methods
generally requires the modeler to choose how to represent a pol-
icy or value function. In the stochastic case, where analytical
solutions are generally not available, a common approach is to
use low-order polynomial splines that exactly match the func-
tion (and maybe some derivatives) at a finite set of gridpoints,
and then to assume that interpolated or extrapolated versions of
the matching polynomial are a good representation elsewhere.

This paper argues that, at least in the context of a standard con-
sumption problem, a better approach is available, which relies
upon the fact that in the absence of uncertainty, the optimal
consumption function has a simple analytical solution. The key
insight is that, under standard assumptions, the consumer who
faces an uninsurable labor income risk will consume less than a
consumer with the same path for expected income but who does
not perceive any uncertainty as being attached to that future in-
come. The ‘realistic’ consumer, who does perceive the risks,
will engage in ‘precautionary saving’ [1, 2, 3], so the perfect
foresight riskless solution provides an upper bound to the solu-
tion that will actually be optimal. A lower bound is provided by
the behavior of a consumer who has the subjective belief that
the future level of income will be the worst that it can possibly
be. This consumer, too, behaves according to the convenient
analytical perfect foresight solution, but his certainty is that of
a pessimist who is extremely overconfident in his pessimism.

We build on bounds for the consumption function and limiting
MPC:s established in buffer-stock theory and related work [4, 5].
Using results from Carroll and Shanker [6], we show how to
use these upper and lower bounds to tightly constrain the shape
and characteristics of the solution to the ’realist’s problem (that
is, the solution to the problem of a consumer who correctly
perceives the risks to future income and behaves rationally in

response) [7]. Imposition of these constraints can clarify and
speed the solution of the realist’s problem.

After showing how to use the method in the baseline case, we
show how to refine it to encompass an even tighter theoretical
bound, and how to extend it to solve a problem in which the
consumer faces both labor income risk and rate-of-return risk.

2 THE REALIST’S PROBLEM

Consider a consumer who correctly perceives all risks. The
consumer’s problem is to maximize expected lifetime utility:

T-t
max E, [Zﬂ"u(cm)} (1)
n=0

where the utility function is CRRA with risk aversion parameter
p>0:

ifp#1

ifp=1. @

u(c) = {E
logc

This utility function satisfies prudence (u”’ > 0), which en-
sures the consumer exhibits precautionary saving in response
to income uncertainty. The optimization is subject to the bud-
get constraints

a=m —¢
Pit1 = PGt

Yirt = Pre1ért
m; = aRy g + ¥

3)

where the variables are defined as
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B - pure time discount factor

a, - assets at the end of period ¢

¢, - consumption in period ¢
m, - ‘market resources’ available for consumption  (4)
Pr+1 - ‘permanent labor income’ in period 7 + 1
Ry41 - gross interest rate from period ¢ to ¢ + 1

¥:+1 - noncapital income in period ¢ + 1.

The exogenous variables evolve according to the Friedman-
Muth Income Process®:

gt+l = Gt+llﬁz+1
0
&1 = B1

-9

with probability p > 0 (5)

with probability (1 — )

where G, is the deterministic permanent income growth fac-
tor, and the permanent shocks to income i, are independently
and identically distributed with mean E[y,.;] = 1 and sup-
port [¥,%] where 0 < ¢ < 1 < < o,” and the transi-
tory shocks to income 6,,; are independently distributed with
mean E[f,;,] = 1 and bounded support § < 6,4 < 0 where
0<0<1<6<oo.

It turns out (see Carroll [10] for a proof) that this problem can
be rewritten in a more convenient form in which choice and
state variables are normalized by the level of permanent in-
come, e.g., using nonbold font for normalized variables, m, =
m,/p;. When that is done, the Bellman equation for the trans-
formed version of the consumer’s problem is

vimy) = max (e,) +BEG,. Ve (mee)]

S.t. (6)

a; = m; — Cy

M1 = R/Grt) ar + &t

and because we have not imposed a liquidity constraint, the
solution satisfies the Euler equation

u'(c;) = BRE([G,], 0 (ci1)]. (7
We define the absolute patience factor as @ = (8R)'/*. A finite
solution requires [6]: (i) the finite-value-of-autarky condition
(FVAC) 0 < BG'PE[y'"] < 1; (ii) the absolute-impatience
condition (AIC) ® < 1; (iii) the return-impatience condition

“Friedman [8] distinguished permanent (long-term earning ca-
pacity) from transitory (temporary fluctuations) income components.
Muth [9] provided the stochastic framework for modeling these as ran-
dom processes. Our specification combines both insights to model un-
employment risk and permanent income growth.

SBounded support (¢ < o) ensures existence of well-defined up-
per and lower bounds for the consumption function. Results in the
literature also exist for unbounded distributions with finite moments
(e.g., lognormal shocks), but establishing the moderation ratio bounds
used in this paper requires bounded support. Extensions to unbounded
shocks are beyond the scope of this paper.

2

(RIC) ®/R < 1; (iv) the growth-impatience condition (GIC)
®/G < 1; and (v) the finite-human-wealth condition (FHWC)
G/R < 1. These conditions ensure existence of upper and lower
bounds on consumption [ 1, 4] and pin down limiting MPCs

[12].

For expositional simplicity in what follows, we set G = 1 and
assume ¥, = 1 with probability 1 for all # > 0 (no perma-
nent income growth or shocks), and drop time subscripts ex-
cept where context requires, working with the infinite-horizon
formulation.® Under these simplifications, FVAC becomes
0 < B < 1, the GIC coincides with the AIC, and the FHWC
reduces to R > 1. All results apply equally to finite-horizon
models via backward recursion from terminal period 7', and to
models with permanent income growth by appropriately adjust-
ing the patience conditions above.

3 BeNcHMARK: THE METHOD OF ENDOGENOUS
GRIDPOINTS

For comparison to our new solution method, we use the en-
dogenous gridpoints solution to the microeconomic problem
presented in Carroll [13]. That method computes the level
of consumption at a set of gridpoints for market resources m
that are determined endogenously using the Euler equation.
The consumption function is then constructed by linear inter-
polation among the gridpoints thus found. Extensions of this
method include multi-dimensional problems [14], occasionally
binding constraints [15], non-smooth and non-concave prob-
lems [16], discrete-continuous choice models [17], and com-
prehensive treatments of theory and practice [18]. For shock
discretization in numerical solutions, standard methods include
[19, 20].

Carroll [10] describes a specific calibration of the model and
constructs a solution using five gridpoints chosen to capture the
structure of the consumption function reasonably well at values
of m near the infinite-horizon target value (See those notes for
details).”

Unfortunately, this endogenous gridpoints solution is not very
well-behaved outside the original range of gridpoints targeted
by the solution method. (Though other common solution meth-
ods are no better outside their own predefined ranges). Figure 1
demonstrates the point by plotting the amount of precautionary
saving implied by a linear extrapolation of our approximated
consumption rule (the consumption of the perfect foresight con-
sumer ¢r_; minus our approximation to optimal consumption
under uncertainty, ¢r_;). Although theory proves that precau-
tionary saving is always positive, the linearly extrapolated nu-
merical approximation eventually predicts negative precaution-
ary saving (at the point in the figure where the extrapolated lo-
cus crosses the horizontal axis).

For notational simplicity, we henceforth assume p # 1. Most
subsequent derivations involving transformations of the value function
(such as A and A) contain expressions with denominators (1 — p) that
are undefined when p = 1. The case p = 1 (logarithmic utility) re-
quires parallel derivations that exploit the simplifications arising from
log utility; the economic insights remain analogous.

"The five gridpoints are used for illustration; production codes typ-
ically use 30-80 gridpoints for accurate solutions.
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Figure 1: For Large Enough my_;, Predicted Precautionary
Saving is Negative (Oops!)
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This error cannot be fixed by extending the upper gridpoint; in
the presence of serious uncertainty, the consumption rule will
need to be evaluated outside of any prespecified grid (because
starting from the top gridpoint, a large enough realization of the
uncertain variable will push next period’s realization of assets
above that top; a similar argument applies below the bottom
gridpoint). While a judicious extrapolation technique can pre-
vent this problem from being fatal (for example by carefully
excluding negative precautionary saving), the problem is often
dealt with using inelegant methods whose implications for the
accuracy of the solution are difficult to gauge.

4 THE METHOD OF MODERATION
4.1 The Optimist, the Pessimist, and the Realist

As a preliminary to our solution, define 4® as end-of-period
human wealth (the present discounted value of future labor
income) for a perfect foresight version of the problem of a
‘risk optimist:” a consumer who believes with perfect confi-
dence that the shocks will always take their expected value of
1, &é4n = B[€] = 1V n > 0. The solution to a perfect foresight
problem of this kind takes the form’

®)

c(m)=(m+ fl)g

for a constant minimal marginal propensity to consume « (de-

fined in footnote '°). We similarly define i'' as ‘minimal hu-
man wealth,” the present discounted value of labor income if

8Setting &, = 1 (the optimist’s assumption), human wealth has
three equivalent forms: (i) backward recursion: iy = 0, i, = (G/R)(1+
hyy)fort = T —1,T —2,...; (ii) forward sum: %, = Z,{;{(G/R)";
(iii) infinite-horizon: # = G/(R = G) if R > G. When G = 1, i, =
Sh(1/R)" and 2 = 1/(R - 1).

9For a derivation, see Carroll and Shanker [6]; k is defined therein
as the MPC of the perfect foresight consumer with horizon 7' — t.

0The MPC of the perfect foresight consumer with horizon T — ¢
(optimist’s behavior at high wealth). Three forms: (i) backward
recursion kK, = k,,/(k,, + ®/R) with k, = 1; (ii) forward sum
K, = (ZL‘S(@/R)")"; (iii) infinite-horizon k = 1 — ®/R.

Setting &,, = £ V n > 0 (the pessimist’s assumption), where
& > 0 is the worst income realization (zero for unemployment, positive
for underemployment), minimal human wealth can be calculated three
ways: (i) backward recursion: h, = 0, o, = (G/R)(¢ + h,, ) for t =

—t+1

the shocks were to take on their worst value in every future pe-
riod &4, = € V¥ n > 0 (which we define as corresponding to the

beliefs of a ‘pessimist’).

We will call a ‘realist’ the consumer who correctly perceives the
true probabilities of the future risks and optimizes accordingly.

A first useful point is that, for the realist, a lower bound for
the level of market resources is m = —h [21, 22], because if m
equalled this value then there would be a positive finite chance
(however small) of receiving &, = & in every future period,
which would require the consumer to set ¢ to zero in order to
guarantee that the intertemporal budget constraint holds. Since
consumption of zero yields negative infinite utility, the solution
to the realist consumer’s problem is not well defined for values
of m < m [23, 24], and the limiting value of the realist’s c is
zero as m | m, where w(u) — 0 as g — —oo (established in
Carroll and Shanker [6]).

Given this result, it will be convenient to define ‘excess’ mar-
ket resources as the amount by which actual resources exceed
the lower bound, and ‘excess’ human wealth as the amount by
which mean expected human wealth exceeds guaranteed mini-
mum human wealth:'?

9

We can now transparently define the optimal consumption rules
for the two perfect foresight problems, those of the ‘optimist’
and the ‘pessimist.” The ‘pessimist’ perceives human wealth
to be equal to its minimum feasible value & with certainty, so
consumption is given by the perfect foresight solution

e(m) = (m + )k

= Amk. (19)

The ‘optimist,” on the other hand, pretends that there is no un-
certainty about future income, and therefore consumes

&m) = (m+h—h+hx
= (Am + Ah)k
= c(m) + Ahk.

Y

4.2  The Consumption Function

It seems obvious that the spending of the realist will be strictly
greater than that of the pessimist and strictly less than that of
the optimist. Figure 2 illustrates the proposition for the con-
sumption rule in period 7 — 1.

The proof is more difficult than might be imagined, but the nec-
essary work is done in Carroll and Shanker [6]1"3 so we will

T-1,T -2,...; (ii) forward sum: h, = fo;f(G/R)”; (iii) infinite-
horizon: h = éG/(R-G)if R > G. When¢é =0, h = 0.
12Here A denotes excess above minimurﬁ, not a time difference.
13Under bounded shocks with strictly positive support (nondegen-
erate lower and upper bounds), the consumption function is strictly

increasing and concave, and the moderation ratio lies in (0, 1); see
Carroll and Shanker [6].
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3 CT=(Am+Ah)k
“—Cc=(am)
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Figure 2: Moderation Illustrated: c < ¢ < €

take the proposition as a fact and proceed by manipulating the
inequality:

c(m+ Am) > ¢(m + Am) > ¢(m + Am)
—c(m+ Am) < —&(m + Am) < —c(m + Am)
0< &m+Am)—cim+Am) < Ahk
¢(m + Am) — c(m + Am)
0< = ==
Ahk

where the fraction in the middle of the last inequality is the
moderation ratio measuring how close the realist’s consump-
tion is to the optimist’s behavior (the numerator is the gap be-
tween the realist and pessimist) relative to the maximum possi-
ble gap between optimist and pessimist. When w = 0, the real-
ist behaves like the pessimist (maximum precautionary saving);
when w = 1, the realist behaves like the optimist (no precau-
tionary saving).'* Defining y = log Am (which can range from
—00 to 00), the object in the middle of the last inequality is

_(Cm+e') —c(m+e)
w(p) = ( Ak ) (13)
and we now define
(oW
XW)_bql—wa (14)

= log(w()) - log(1 - w())

which has the virtue that it is asymprotically linear in the limit
as p approaches +00.!> As w — 1 (realist approaches optimist),
X — +00; as w — 0 (realist approaches pessimist), y — —o0.'¢

14Under bounded shocks [25, 6], w € (0, 1) strictly for all m > m.
Equivalently, ¢ = ¢ + wAhk, ensuring the realist consumes strictly
between the pessimist and optimist.

SUnder the GIC, y(u) is asymptotically linear with slope @ =
limy, 100 % > 0 as g — +oo (may equal zero in theory, but strictly
positive on finite grids). Practical implications: (i) we extrapolate y
linearly using the positive boundary slope; (ii) this preserves w € (0, 1)
and hence ¢ < ¢ < € throughout the extrapolation domain, even if the
theoretical limiting slope vanishes.

16The method uses standard ML transformations for unbounded do-
mains: logit maps w € (0,1) to y € (—o0, c0) with inverse sigmoid

4
Given Y, the consumption function can be recovered from
=w
—_—
R 1
c=c hK. (15)

+— A
1 +exp(—y) ~

Thus, the procedure is to calculate y at the points g correspond-
ing to the log of the Am points defined above, and then using
these to construct an interpolating approximation y from which
we indirectly obtain our approximated consumption rule ¢ (an
approximation to the true €¢) by substituting y for y in equation
(15).

Because this method relies upon the fact that the problem is
easy to solve if the decision maker has unreasonable views (ei-
ther in the optimistic or the pessimistic direction), and because
the correct solution is always between these immoderate ex-
tremes, we call our solution procedure the ‘method of modera-
tion.”

Results are shown in Figure 3; a reader with very good eyesight
might be able to detect the barest hint of a discrepancy between
the Truth and the Approximation at the far righthand edge of the
figure - a stark contrast with the calamitous divergence evident
in Figure 1.

—  Truth
- - Approximation

Figure 3: Extrapolated ¢7_; Constructed Using the Method of
Moderation

4.3 The Value Function

Often it is useful to know the value function as well as the con-
sumption rule. Fortunately, many of the tricks used when solv-
ing for the consumption rule have a direct analogue in approxi-
mation of the value function.

Consider the perfect foresight (or “optimist’s””) problem in pe-
riod T — 1. Using the fact that in a perfect foresight model
the growth factor for consumption is constant, we can use
¢; = @ - ¢, to calculate the value function in period 7' — 1:

w = 1/(1 + exp(—x)); log maps (m — m) € (0,00) to p € (o0, 0).
These transformations enable accurate interpolation and are familiar
to ML practitioners.
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Vro1(mr_1) = u(cr-1) + Pulcr)
=u(cr_1) (1 +p0'7)
=u(cr-1) (1 + ®/R)
= u(cr-1) PDV7_, (0)/er-

— el

(16)

=T
_CTfl

where CT = PDV! (¢)/c, is the present discounted value of con-
sumption, normalized by current consumption. Using the fact
demonstrated in Carroll and Shanker [6] that CT = k', a sim-
ilar function can be constructed recursively for earlier periods,
yielding the general expression

u(c(m))C

= u(e(m)x"

u((Am + A"

[am+am' /(1 = p)] - [ -7
=u(Am + Ah)k™".

v(m)

A7)

This can be transformed as

A= (-p@)i?
= ccl/a-»

= (Am + Ab)?!P),

(18)

We apply the same transformation to the value function for the
problem with uncertainty (the “realist’s” problem):

A= (1 - p)¥(my/= (19)
and an excellent approximation to the value function can be ob-
tained by calculating the values of A at the same gridpoints used
by the consumption function approximation, and interpolating
among those points.

However, as with the consumption approximation, we can do
even better if we realize that the A function for the optimist’s
problem is an upper bound for the A function in the presence of
uncertainty, and the value function for the pessimist is a lower
bound. Analogously to (13), define an upper-case

Ou) < A(m + &) — A(m + e) 20
and an upper-case version of the y equation in (14):
. Q
X(u) =log (#)
1 - Q(p) ey

= log(Q(w)) — log(1 — Q(u))

"Under perfect foresight, consumption grows at rate ®: ¢, =
¢,®". Discounting yields (PDV/(¢)/c,) = YL 5(®/R)" = k!, so
C!' = k7! (unchanged for normalized variables). In the infinite-horizon
limit, we write simply C = .

5

and if we approximate these objects then invert them (as above
with the w and y functions) we obtain a very high-quality ap-
proximation to our inverted value function at the same points
for which we have our approximated value function:

=0
—_—

1
A=A+ (— )Ahg()”“p)

22
1 + exp(—X) @2

from which we obtain our approximation to the value function
as v =u(A).

5 EXTENSIONS
5.1 A Tighter Upper Bound

Carroll and Shanker [6] derives an upper limit k'® for the MPC
as m approaches its lower bound, extending the explicit limiting
MPC formulas established in buffer-stock theory [12]. Using
this fact plus the strict concavity of the consumption function
yields the proposition that

&(m + Am) < RAm. (23)

The solution method described above does not guarantee that
approximated consumption will respect this constraint between
gridpoints, and a failure to respect the constraint can occasion-
ally cause computational problems in solving or simulating the
model. Here, we describe a method for constructing an approx-
imation that always satisfies the constraint.

Defining m* as the cusp point where the two upper bounds in-
tersect (where Am™ = m* — m):

(Am* + Ah)k = kAm*
KAh
Am* = =
e S 24)
h—nh
mt = —E+E(_ _),
K—K

this intersection occurs in the feasible region (i.e., m* > m)
since k > k under the stated conditions, ensuring Am* > 0. We
want to construct a consumption function for m € (m, m*] that
respects the tighter upper bound:

Amk < &(m + Am) < kAm
0< ¢em+Am)—Amk < Am(k — k) (25)

&(m+Am)—Amk
0< (HEsT) <t

Again defining g = log Am, the object in the middle of the
inequality is

N e(m+et)e™ —k

8The MPC at the natural borrowing constraint under maximum
income uncertainty. For Friedman-Muth with unemployment prob-
ability ¢ = Pr(¢ = 0) [26]: (i) backward recursion k, = 1 —
PP(@/R)(1 + k) with & = 1; (i) forward sum k, = 1 —
9'/7(®/R) 2120 (9"7(@/R))'; (i) infinite-horizon & = 1 - ¢'/*(®/R).
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As m approaches —m, @(u) converges to 0, while as m ap-
proaches +co, () approaches 1.

As before, we can derive an approximated consumption func-
tion; call it &. This function will clearly do a better job approxi-
mating the consumption function for low values of m while the
previous approximation will perform better for high values of
m.

For middling values of m it is not clear which of these functions
will perform better. However, an alternative is available which

performs well. Define the highest gridpoint below m* as /i and
the lowest gridpoint above m* as 7. Then there will be a unique
interpolating polynomial that matches the level and slope of the
consumption function at these two points. Call this function
¢(m).

Using indicator functions that are zero everywhere except for
specified intervals,

Lom)=1ifm<m
Iyiig(m) = 1if
lHi(m) =1if

27)

3

m<m<

<m

3

we can define a well-behaved approximating consumption
function

¢ = 110€ + Lyig€ + 1yc. (28)
This just says that, for each interval, we use the approxima-
tion that is most appropriate. The function is continuous and
once-differentiable everywhere, and is therefore well behaved
for computational purposes.

We now construct an upper-bound value function implied for
a consumer whose spending behavior is consistent with the re-
fined upper-bound consumption rule.

For m > m*, this consumption rule is the same as before, so the
constructed upper-bound value function is also the same. How-
ever, for values m < m" matters are slightly more complicated.

Start with the fact that at the cusp point,

v(m*) = u(©(m"))C
= uw(Am'k)C. (29)
But for all m,

v(m) = u(c(m)) + w(m — &(m)), (30)
and we assume that for the consumer below the cusp point con-
sumption is given by kAm so for m < m*

v(m) = u(kAm) + w((1 — K)Am), (31)
which is easy to compute because w(a,) = BV, 1(@;Rie1 + 1)
where V is as defined above because a consumer who ends the
current period with assets exceeding the lower bound will not
expect to be constrained next period. (Recall again that we are
merely constructing an object that is guaranteed to be an upper

6

bound for the value that the ‘realist’ consumer will experience.)
At the gridpoints defined by the solution of the consumption
problem can then construct

R(m) = ((1 - p)¥(m))! /1= (32)

which yields the appropriate vector for constructing X and €.
The rest of the procedure is analogous to that performed for the
consumption rule and is thus omitted for brevity.

0.0 05 10 15 20 25 3.0

Figure 4: A Tighter Upper Bound

5.2 Hermite Interpolation

The numerical accuracy of the method of moderation depends
critically on the quality of function approximation between
gridpoints [27]. Our bracketing approach complements work
that bounds numerical errors in dynamic economic models [28].
Although linear interpolation that matches the level of ¢ at the
gridpoints is simple, Hermite interpolation [29, 30, 31] offers
a considerable advantage. By matching both the level and the
derivative of the ¢ function at the gridpoints, the consumption
rule derived from such interpolation numerically satisfies the
Euler equation at each gridpoint for which the problem has been
solved [32, 33].

The theoretical foundation for this approach rests on the mod-
eration ratio w. This ratio captures how close the realist’s con-
sumption is to the optimist’s behavior relative to the gap be-
tween optimist and pessimist. Since its log-gap argument u
moves with cash-on-hand relative to human wealth, the deriva-
tive measures how quickly the realist approaches the optimist
as available resources increase:

ow

Am(0e/dm — k)
o ’

< (33)

For numerical stability and interpretation on an unbounded
scale, we apply the transformation defined in (14) to the mod-
eration ratio. The derivative of this transformation is:

81 _ Ow/op

op ol -w) (34)
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This expression provides the slope data for cubic Hermite in-
terpolation.'” Differentiating (15) yields a moderation form for
the MPC:?"

X -mr+r (35)
om -
where
K Ah
=— —. ) 36
n XK—x Am Oow /o (36)

The weight i € [0, 1] at gridpoints by construction, since equa-
tion (35) can be rewritten as 5 = (0¢/dm — k) /(k — k) and theory
guarantees Kk < 9¢/0m < k at points where the Euler equation is
solved. Between gridpoints, the interpolated moderation ratio
derivative dw/du should preserve this property when the grid is
sufficiently refined. The weight reflects precautionary intensity:
it increases when market resources are low relative to human
wealth (Ah/Am large) and when the moderation ratio responds
sharply to changes in log excess resources (dw/du large). As
Am — oo, § — 0 and the MPC approaches the optimist’s; as
Am — 0,7 — 1 and the MPC approaches the pessimist’s.

We can apply analogous techniques to the value function. Un-
der perfect foresight, consumption grows at a constant rate,
making C constant. This implies that the inverse value function
for the optimist has a constant slope with respect to cash-on-
hand:

A = M0

= g P/1=p) (37)

The result in (37) has important implications for the structure
of the value function.”!

Consider the value analogue of the moderation ratio, which
compares the realist’s value to the optimist’s. The derivative
of this ratio with respect to the log-gap argument is:

00  Am(’ - X))

o2 _ 38
En ARX' (38)

where &’ = k#/07? from (37) and A’ is the derivative of the
realist’s inverse value function. Note that for the pessimist’s

For cubic Hermite interpolation of the transformed moderation ra-
tio, use node values from the transformation and node slopes dy/ou.
For improved shape preservation, a monotone cubic Hermite scheme
[34] can be used (such as the Fritsch-Carlson or Fritsch-Butland algo-
rithms), where theoretical slopes serve as targets that may be adjusted
to enforce monotonicity.

2Differentiating (15) with respect to m and applying the chain rule:
o¢/om = k(1 + Ah/Am - dw/du). The moderation form follows by
factoring: n(k—k) = k- Ah/Am-0w/du. Note that dw /o = w(1 —w)-
Oy /ou from the chain rule, where w(1 — w) = dw/dy is the standard
sigmoid derivative, but working directly with dw/du provides superior
numerical stability since the moderation ratio w € [0, 1] is naturally
bounded.

2This confirms that A is linear in m and highlights the role of
in scaling marginal utility in the perfect-foresight benchmark. The
linearity property simplifies both theoretical analysis and numerical
implementation.
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inverse value function, the derivative equals A’ since both are
linear perfect foresight solutions.

Applying the same transformation to the value-based moder-
ation ratio converts the bounded ratio into an unconstrained
slope:

@: aQ/op 39)
o O1-0)

Since A and Vv are functional inverses, their derivatives are
linked by chain-rule relationships. The first derivative is:

R = ((1 = p)¥(m) P ¥ (m). (40)
The first- and second-derivative connections are:
V =w@A)A
) (41)

V' =w QA +w @A

Moreover, if we use the double-derivative calculated in (41) to
produce a higher-order Hermite polynomial, our approximation
will also match the marginal propensity to consume at the grid-
points.?

These results provide the theoretical foundation for construct-
ing high-quality cubic Hermite interpolants that preserve both
the economic structure and numerical accuracy of the model
between gridpoints.

5.3 Stochastic Rate of Return

Thus far we have assumed that the interest factor is constant at
R. Extending the previous derivations to allow for a perfectly
forecastable time-varying interest factor R would be trivial. Al-
lowing for a stochastic interest factor is less trivial.

The easiest case is where the interest factor is i.i.d.,

logR,+n~N(r+7r—0'3/2,0'f)\v’n>0 42)
because in this case Samuelson [35], Merton [36, 37] showed
that for a consumer without labor income (or with perfectly
forecastable labor income) the consumption function is linear,
with an MPC.?3

k= 1-(BER7)) " 43)

t+1

and in this case the previous analysis applies once we substitute
this MPC for the one that characterizes the perfect foresight

22This would guarantee that the consumption function generated
from the value function would match both the level of consumption
and the marginal propensity to consume at the gridpoints, making
the numerical differences between the newly constructed consump-
tion function and the highly accurate one constructed earlier negligible
within the grid.

23The Merton-Samuelson rule implies linear consumption ¢(m) =
xkm with k from (43). For lognormal logR ~ N(r + n — 02/2,02),
the MGF yields E[R'*] = exp((1 — p)(r + m) + (1 — p)(1 — 2p)0'§/2).
This extends to our framework by substituting stochastic-return MPC
for perfect foresight MPC. See Carroll [38], Benhabib et al. [39].
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problem without rate-of-return risk. The more realistic case
where the interest factor has some serial correlation is more
complex, and thus left for future work.

In principle, this refinement should be combined with the previ-
ous one; further exposition of this combination is omitted here
because no new insights spring from the combination of the two
techniques.

6 CONCLUSION

The method proposed here is not universally applicable. For
example, the method cannot be used for problems for which
upper and lower bounds to the ‘true’ solution are not known.
But many problems do have obvious upper and lower bounds,
and in those cases (as in the consumption example used in the
paper), the method may result in substantial improvements in
accuracy and stability of solutions.
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