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Abstract
In a risky world, a pessimist assumes the worst will happen. Someone who ignores risk altogether is an
optimist. Consumption decisions are mathematically simple for both the pessimist and the optimist because
both behave as if they live in a riskless world. A realist (someone who wants to respond optimally to risk) faces
a much more difficult problem, but (under standard conditions) will choose a level of spending somewhere
between pessimist’s and the optimist’s. We use this fact to redefine the space in which the realist searches for
optimal consumption rules. The resulting solution accurately represents the numerical consumption rule over
the entire interval of feasible wealth values with remarkably few computations.

Keywords Dynamic Stochastic Optimization

1 Introduction

Solving a consumption, investment, portfolio choice, or similar
intertemporal optimization problem using numerical methods
generally requires the modeler to choose how to represent a pol-
icy or value function. In the stochastic case, where analytical
solutions are generally not available, a common approach is to
use low-order polynomial splines that exactly match the func-
tion (and maybe some derivatives) at a finite set of gridpoints,
and then to assume that interpolated or extrapolated versions of
that spline represent the function well at the continuous infinity
of unmatched points.

This paper argues that a better approach in the standard con-
sumption problem is to rely upon the fact that without uncer-
tainty, the optimal consumption function has a simple analytical
solution. The key insight is that, under standard assumptions,
the consumer who faces an uninsurable labor income risk will
consume less than a consumer with the same path for expected
income but who does not perceive any uncertainty as being at-
tached to that future income. The ‘realistic’ consumer, who
does perceive the risks, will engage in ‘precautionary saving’
[1, 2, 3], so the perfect foresight riskless solution provides an
upper bound to the solution that will actually be optimal. A
lower bound is provided by the behavior of a consumer who
has the subjective belief that the future level of income will be
the worst that it can possibly be. This consumer, too, behaves
according to the convenient analytical perfect foresight solu-
tion, but his certainty is that of a pessimist perfectly confident
in his pessimism.

We build on bounds for the consumption function and limiting
MPCs established in buffer-stock theory and related work [4, 5].
Using results from Carroll and Shanker [6], we show how to
use these upper and lower bounds to tightly constrain the shape
and characteristics of the solution to problem of the ‘realist’
[7]. Imposition of these constraints can clarify and speed the
solution of the realist’s problem.

After showing how to use the method in the baseline case, we
show how to refine it to encompass an even tighter theoretical
bound, and how to extend it to solve a problem in which the
consumer faces both labor income risk and rate-of-return risk.

2 The Realist’s Problem

We assume that truly optimal behavior in the problem facing
the consumer who understands all his risks is captured by4

max Et

T−t∑
n=0

βnu(ct+n)

 (2)

subject to

at = mt − ct

pt+1 = ptGt+1

yt+1 = pt+1ξt+1

mt+1 = atRt+1 + yt+1

(3)

where

4Where the utility function is CRRA with risk aversion parameter
ρ > 0

u(c) =

 c1−ρ
1−ρ if ρ , 1
log c if ρ = 1

(1)
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β - pure time discount factor
at - assets at the end of period t
ct - consumption in period t

mt - ‘market resources’ available for consumption
pt+1 - ‘permanent labor income’ in period t + 1
Rt+1 - interest factor (1 + rt+1) from period t to t + 1
yt+1 - noncapital income in period t + 1.

(4)

and the exogenous variables evolve according to the Friedman-
Muth Income Process5

Gt+1 = Gt+1ψt+1

ξt+1 =

0 with probability ℘ > 0
θt+1
1−℘ with probability (1 − ℘)

(5)

where the permanent shocks ψt+1 are independently and identi-
cally distributed with mean E[ψt+1] = 1 and support on [ψ, ψ̄],
with 0 < ψ ≤ 1 ≤ ψ̄ < ∞, and the transitory shocks θt+1 are
independently distributed with mean E[θt+1] = 1 and bounded
support θ ≤ θt+1 ≤ θ̄, with 0 ≤ θ ≤ 1 ≤ θ̄ < ∞.

It turns out (see Carroll [10] for a proof) that this problem can
be rewritten in a more convenient form in which choice and
state variables are normalized by the level of permanent in-
come, e.g., using nonbold font for normalized variables, mt =
mt/pt. When that is done, the Bellman equation for the trans-
formed version of the consumer’s problem is

vt(mt) = max
ct

u(ct) + βEt[G1−ρ
t+1 vt+1(mt+1)]

s.t.
at = mt − ct

mt+1 = (R/Gt+1)︸    ︷︷    ︸
≡Rt+1

at + ξt+1,

(6)

and because we have not imposed a liquidity constraint, the
solution satisfies the Euler equation

u′(ct) = βREt[G−ρt+1u′(ct+1)]. (7)

For the remainder of the paper we will assume that perma-
nent income pt grows by the permanent growth shock Gt+1 =
Gt+1ψt+1, where Gt+1 is the deterministic permanent growth fac-
tor and ψt+1 is the idiosyncratic permanent shock. For conve-
nience, we define the absolute patience factor as Φ ≡ (βR)1/ρ.
A finite solution requires [6]: (i) the finite-value-of-autarky

5Friedman [8] introduced the distinction between permanent and
transitory components of income, where permanent income reflects
long-term earning capacity and transitory income captures temporary
fluctuations. Muth [9] developed the stochastic foundations for mod-
eling these income components as random processes with specific
distributional properties. Our Friedman-Muth specification combines
Friedman’s economic insight about income persistence with Muth’s
rigorous stochastic framework, allowing for realistic modeling of both
unemployment risk and permanent income growth.

condition (FVAC) 0 < βG1−ρE[ψ1−ρ] < 1; (ii) the absolute-
impatience condition (AIC) Φ < 1; (iii) the return-impatience
condition (RIC) Φ/R < 1; (iv) the growth-impatience condi-
tion (GIC) Φ/G < 1; and (v) the finite-human-wealth condition
(FHWC) G/R < 1. These conditions ensure existence of upper
and lower bounds on consumption [11, 4] and pin down lim-
iting MPCs [12]. Under perfect foresight with G = 1, FVAC
becomes 0 < β < 1, the GIC coincides with the AIC, and the
FHWC reduces to R > 1.

3 Benchmark: TheMethod of Endogenous
Gridpoints

For comparison to our new solution method, we use the en-
dogenous gridpoints solution to the microeconomic problem
presented in Carroll [13]. That method computes the level
of consumption at a set of gridpoints for market resources m
that are determined endogenously using the Euler equation.
The consumption function is then constructed by linear inter-
polation among the gridpoints thus found. Extensions of this
method include multi-dimensional problems [14], occasionally
binding constraints [15], non-smooth and non-concave prob-
lems [16], discrete-continuous choice models [17], and com-
prehensive treatments of theory and practice [18]. For shock
discretization in numerical solutions, standard methods include
[19, 20].

Carroll [10] describes a specific calibration of the model and
constructs a solution using five gridpoints chosen to capture the
structure of the consumption function reasonably well at values
of m near the infinite-horizon target value (See those notes for
details).6

Unfortunately, this endogenous gridpoints solution is not very
well-behaved outside the original range of gridpoints targeted
by the solution method. (Though other common solution meth-
ods are no better outside their own predefined ranges). Figure 1
demonstrates the point by plotting the amount of precautionary
saving implied by a linear extrapolation of our approximated
consumption rule (the consumption of the perfect foresight con-
sumer c̄T−1 minus our approximation to optimal consumption
under uncertainty, c̀T−1). Although theory proves that precau-
tionary saving is always positive, the linearly extrapolated nu-
merical approximation eventually predicts negative precaution-
ary saving (at the point in the figure where the extrapolated lo-
cus crosses the horizontal axis).

This error cannot be fixed by extending the upper gridpoint; in
the presence of serious uncertainty, the consumption rule will
need to be evaluated outside of any prespecified grid (because
starting from the top gridpoint, a large enough realization of the
uncertain variable will push next period’s realization of assets
above that top; a similar argument applies below the bottom
gridpoint). While a judicious extrapolation technique can pre-
vent this problem from being fatal (for example by carefully
excluding negative precautionary saving), the problem is often
dealt with using inelegant methods whose implications for the
accuracy of the solution are difficult to gauge.

6The five gridpoints are used for illustration; production codes typ-
ically use 30-80 gridpoints for accurate solutions.
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Figure 1: For Large Enough mT−1, Predicted Precautionary
Saving is Negative (Oops!)

4 TheMethod ofModeration

4.1 The Optimist, the Pessimist, and the Realist

As a preliminary to our solution, define h̄t
7 as end-of-period

human wealth (the present discounted value of future labor in-
come) for a perfect foresight version of the problem of a ‘risk
optimist:’ a period-t consumer who believes with perfect con-
fidence that the shocks will always take their expected value of
1, ξt+n = E[ξ] = 1 ∀ n > 0. The solution to a perfect foresight
problem of this kind takes the form8

c̄t(mt) = (mt + h̄t)κt (8)

for a constant minimal marginal propensity to consume κt given
below.9 We similarly define ht

10 as ‘minimal human wealth,’
the present discounted value of labor income if the shocks were
to take on their worst value in every future period ξt+n = 0 or ξ
∀ n > 0 (which we define as corresponding to the beliefs of a
‘pessimist’).

7In normalized variables, with constant interest factor R > 1
and deterministic permanent growth factor G, and setting ξt+n = 1
(the optimist’s assumption), human wealth can be calculated in three
equivalent ways: (i) finite-horizon backward recursion: h̄T = 0,
h̄t = (G/R) (1+ h̄t+1) for t = T −1,T −2, . . .; (ii) finite-horizon forward
sum: h̄t =

∑T−t
n=1(G/R)n; (iii) infinite-horizon limit: h̄∞ = G/(R − G)

provided R > G. When G = 1 (as used in the main text), these expres-
sions simplify to h̄t =

∑T−t
n=1(1/R)n and h̄∞ = 1/(R − 1).

8For a derivation, see Carroll and Shanker [6]; κt is defined therein
as the MPC of the perfect foresight consumer with horizon T − t.

9This represents the MPC of the perfect foresight consumer with
horizon T − t, corresponding to the optimist’s consumption behav-
ior when market resources are very large. Equivalent expressions: (i)
backward recursion κt = κt+1/

(
κt+1 + Φ/R

)
with terminal condition

κT = 1; (ii) finite-horizon forward sum κt =
(∑T−t

n=0(Φ/R)n)−1; (iii)
closed-form infinite-horizon limit κ∞ = 1 − Φ/R.

10In normalized variables, with constant interest factor R > 1 and
deterministic permanent growth factor G, and setting ξt+n = ξ ∀ n > 0
(the pessimist’s assumption), minimal human wealth can be calculated
in three equivalent ways. In the Friedman-Muth process, ξ ≡ 0 since
℘ > 0 represents the probability of unemployment (zero transitory in-
come). The three calculation methods are: (i) finite-horizon backward
recursion: hT = 0, ht = (G/R)

(
ξ + ht+1

)
for t = T − 1,T − 2, . . .; (ii)

finite-horizon forward sum: ht = ξ
∑T−t

n=1(G/R)n; (iii) infinite-horizon
limit: h∞ = ξG/(R−G) provided R > G. When ξ = 0 (unemployment
possible), these expressions reduce to ht = 0.

We will call a ‘realist’ the consumer who correctly perceives the
true probabilities of the future risks and optimizes accordingly.

A first useful point is that, for the realist, a lower bound for the
level of market resources is mt = −ht [21, 22], because if mt
equalled this value then there would be a positive finite chance
(however small) of receiving ξt+n = 0 or ξ in every future pe-
riod, which would require the consumer to set ct to zero in or-
der to guarantee that the intertemporal budget constraint holds.
Since consumption of zero yields negative infinite utility, the
solution to the realist consumer’s problem is not well defined
for values of mt < mt [23, 24], and the limiting value of the
realist’s ct is zero as mt ↓ mt.

Given this result, it will be convenient to define ‘excess’ mar-
ket resources as the amount by which actual resources exceed
the lower bound, and ‘excess’ human wealth as the amount by
which mean expected human wealth exceeds guaranteed mini-
mum human wealth:

m̈t = mt +

=−m︷︸︸︷
ht

ḧt = h̄t − ht.

(9)

We can now transparently define the optimal consumption rules
for the two perfect foresight problems, those of the ‘optimist’
and the ‘pessimist.’ The ‘pessimist’ perceives human wealth
to be equal to its minimum feasible value ht with certainty, so
consumption is given by the perfect foresight solution

ct(mt) = (mt + ht)κt

= m̈tκt.
(10)

The ‘optimist,’ on the other hand, pretends that there is no un-
certainty about future income, and therefore consumes

c̄t(mt) = (mt + ht − ht + h̄t)κt

= (m̈t + ḧt)κt

= ct(mt) + ḧtκt.

(11)

4.2 The Consumption Function

It seems obvious that the spending of the realist will be strictly
greater than that of the pessimist and strictly less than that of
the optimist. Figure 2 illustrates the proposition for the con-
sumption rule in period T − 1.

The proof is more difficult than might be imagined, but the nec-
essary work is done in Carroll and Shanker [6]11 so we will
take the proposition as a fact and proceed by manipulating the
inequality:

11Under prudence (u′′′ > 0) and bounded shocks with strictly pos-
itive support (nondegenerate lower and upper bounds), the consump-
tion function is strictly increasing and concave, and the moderation
ratio lies in (0, 1); see Carroll and Shanker [6].
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Figure 2: Moderation Illustrated: c < c̀ < c̄

c̄t(mt + m̈t) > ĉt(mt + m̈t) > ct(mt + m̈t)
−c̄t(mt + m̈t) < −ĉt(mt + m̈t) < −m̈tκt

0 < c̄t(mt + m̈t) − ĉt(mt + m̈t) < ḧtκt

0 <
 c̄t(mt + m̈t) − ĉt(mt + m̈t)

ḧtκt

︸                              ︷︷                              ︸
≡ω̄t

< 1

(12)

where the fraction in the middle of the last inequality is the ratio
of actual precautionary saving (the numerator is the difference
between perfect-foresight consumption and optimal consump-
tion in the presence of uncertainty) to the maximum conceiv-
able amount of precautionary saving (the amount that would
be undertaken by the pessimist who consumes nothing out of
any future income beyond the perfectly certain component).12

Defining µt = log m̈t (which can range from −∞ to ∞), the
object in the middle of the last inequality is

ω̄t(µt) ≡
 c̄t(mt + eµt ) − ĉt(mt + eµt )

ḧtκt

 , (13)

and we now define

χ̄t(µt) = log
(

1 − ω̄t(µt)
ω̄t(µt)

)
= log

(
1/ω̄t(µt) − 1

) (14)

which has the virtue that it is asymptotically linear in the limit
as µt approaches +∞.13

12This ratio is strictly between 0 and 1 for all mt > mt under strict
monotonicity of the consumption function, which is ensured by pru-
dence (u′′′ > 0) and bounded shocks [25], as demonstrated in Carroll
and Shanker [6]. The denominator ḧtκt is constant in mt within a given
period, so the ratio is well-defined. Equivalently, precautionary saving
satisfies c̄t − ĉt = ω̄t ḧtκt with ω̄t ∈ (0, 1), which ensures it is strictly
positive.

13Under prudence (u′′′ > 0) and GIC, χ̄t(µt) is asymptotically lin-
ear: its slope converges to a constant αt ≥ 0 as µt → +∞. At the
infinite limit αt may equal 0; on any finite grid, the boundary slope
used in computation is strictly positive. For practical numerical work
on finite grids, we extrapolate χ̄t linearly using that boundary slope.
This approach preserves ω̄t ∈ (0, 1) and hence ct < c̀t < c̄t, ensur-
ing that precautionary saving c̄t − c̀t remains strictly positive over the
extrapolation domain.

Given χ̄, the consumption function can be recovered from

ĉt = c̄t −

=ω̄t︷        ︸︸        ︷
1

1 + exp(χ̄t)
ḧtκt. (15)

Thus, the procedure is to calculate χ̄t at the points µt corre-
sponding to the log of the m̈t points defined above, and then
using these to construct an interpolating approximation `̄χt from
which we indirectly obtain our approximated consumption rule
ĉt by substituting `̄χt for χ̄ in equation (15).

Because this method relies upon the fact that the problem is
easy to solve if the decision maker has unreasonable views (ei-
ther in the optimistic or the pessimistic direction), and because
the correct solution is always between these immoderate ex-
tremes, we call our solution procedure the ‘method of modera-
tion.’

Results are shown in Figure 3; a reader with very good eyesight
might be able to detect the barest hint of a discrepancy between
the Truth and the Approximation at the far righthand edge of the
figure - a stark contrast with the calamitous divergence evident
in Figure 1.
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Figure 3: Extrapolated c̀t−1 Constructed Using the Method of
Moderation

4.3 The Value Function

Often it is useful to know the value function as well as the con-
sumption rule. Fortunately, many of the tricks used when solv-
ing for the consumption rule have a direct analogue in approxi-
mation of the value function.

Consider the perfect foresight (or “optimist’s”) problem in pe-
riod T − 1. Using the fact that in a perfect foresight model
the growth factor for consumption is constant, we can use
ct = Φ · ct−1 to calculate the value function in period T − 1:

v̄T−1(mT−1) ≡ u(cT−1) + βu(cT )

= u(cT−1)
(
1 + βΦ1−ρ

)
= u(cT−1) (1 + Φ/R)

= u(cT−1) PDVT
T−1(c)/cT−1︸              ︷︷              ︸
≡CT

T−1

(16)

where CT
t = PDVT

t (c)/ct is the present discounted value of con-
sumption, normalized by current consumption. Using the fact
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demonstrated in Carroll and Shanker [6] that CT
t = κ

−1
t

14, a sim-
ilar function can be constructed recursively for earlier periods,
yielding the general expression

v̄t(mt) = u(c̄t(mt))CT
t

= u(c̄t)κ−1
t

= u((m̈t + ḧt)κt)κ
−1
t

=
[
(m̈t + ḧt)1−ρ/(1 − ρ)

]
·
[
κ1−ρ

t · κ−1
t

]
= u(m̈t + ḧt)κ

−ρ
t .

(17)

This can be transformed as

Λ̄t ≡ ((1 − ρ)v̄t)1/(1−ρ)

= ct(CT
t )1/(1−ρ)

= (m̈t + ḧt)κ
−ρ/(1−ρ)
t

(18)

We apply the same transformation to the value function for the
problem with uncertainty (the “realist’s” problem):

Λ̂t = ((1 − ρ)v̂t(mt))1/(1−ρ) (19)

and an excellent approximation to the value function can be ob-
tained by calculating the values of Λ̂ at the same gridpoints used
by the consumption function approximation, and interpolating
among those points.

However, as with the consumption approximation, we can do
even better if we realize that the Λ̄ function for the optimist’s
problem is an upper bound for the Λ function in the presence of
uncertainty, and the value function for the pessimist is a lower
bound. Analogously to (13), define an upper-case

Ω̂t(µt) =
 Λ̄t(mt + eµt ) − Λ̂t(mt + eµt )

ḧtκt(CT
t )1/(1−ρ)

 (20)

and an upper-case version of the χ̄ equation in (14):

X̂t(µt) = log
(

1 − Ω̂t(µt)

Ω̂t(µt)

)
= log

(
1/Ω̂t(µt) − 1

) (21)

and if we approximate these objects then invert them (as above
with the ω̄ and χ̄ functions) we obtain a very high-quality ap-
proximation to our inverted value function at the same points
for which we have our approximated value function:

Λ̂t = Λ̄t −

=Ω̂t︷           ︸︸           ︷(
1

1 + exp(X̂t)

)
ḧtκt(C

T
t )1/(1−ρ) (22)

14Under perfect foresight with time-invariant β and R, consumption
grows at the constant gross rate Φ, so ct+n = ct Φ

n. Discounting each
term by R−n yields the present discounted value ratio: (PDVT

t (c)/ct) =∑T−t
n=0(Φ/R)n. Hence CT

t =
∑T−t

n=0(Φ/R)n = κ−1
t . When working with

normalized variables, replace c with c; the identity remains unchanged.

from which we obtain our approximation to the value function
as v̂t = u(Λ̂t).

5 Extensions

5.1 A Tighter Upper Bound

Carroll and Shanker [6] derives an upper limit κ̄t
15 for the MPC

as mt approaches its lower bound, extending the explicit limit-
ing MPC formulas established in buffer-stock theory [12]. Us-
ing this fact plus the strict concavity of the consumption func-
tion yields the proposition that

ĉt(mt + m̈t) < κ̄tm̈t. (23)

The solution method described above does not guarantee that
approximated consumption will respect this constraint between
gridpoints, and a failure to respect the constraint can occasion-
ally cause computational problems in solving or simulating the
model. Here, we describe a method for constructing an approx-
imation that always satisfies the constraint.

Defining m∗t as the cusp point where the two upper bounds in-
tersect (where m̈∗t ≡ m∗t − mt):(

m̈∗t + ḧt
)
κt = κ̄t m̈∗t

m̈∗t =
κt ḧt

κ̄t − κt

m∗t = −ht +
κt

(
h̄t − ht

)
κ̄t − κt

,

(24)

we want to construct a consumption function for mt ∈ (mt,m
∗
t ]

that respects the tighter upper bound:

m̈tκt < ĉt(mt + m̈t) < κ̄tm̈t
m̈t(κ̄t − κt) > κ̄tm̈t − ĉt(mt + m̈t) > 0

1 >
(
κ̄tm̈t−ĉt(mt+m̈t)

m̈t(κ̄t−κt)

)
> 0.

(25)

Again defining µt = log m̈t, the object in the middle of the in-
equality is

ω
t
(µt) ≡

κ̄t − ĉt(mt + eµt )e−µt

κ̄t − κt
. (26)

As mt approaches −mt, ωt
(µt) converges to 0, while as mt ap-

proaches +∞, ω
t
(µt) approaches 1.

As before, we can derive an approximated consumption func-
tion; call it `̌ct. This function will clearly do a better job approx-
imating the consumption function for low values of mt while

15This represents the MPC when market resources approach the nat-
ural borrowing constraint, where the consumer faces maximum uncer-
tainty about future income. In the Friedman-Muth process [26], ℘ is
the probability that the transitory shock equals zero: ℘ = Pr(ξ = 0),
representing the unemployment probability. Equivalent expressions:
(i) backward recursion κ̄t = 1−℘1/ρ Φ

R (1+ κ̄t+1) with terminal condition
κ̄T = 1; (ii) finite-horizon forward sum κ̄t = 1 − ℘1/ρ Φ

R

∑T−t
n=0

(
℘1/ρ Φ

R

)n
;

(iii) closed-form infinite-horizon limit κ̄∞ = 1 − ℘1/ρ Φ
R .
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the previous approximation will perform better for high values
of mt.

For middling values of m it is not clear which of these functions
will perform better. However, an alternative is available which
performs well. Define the highest gridpoint below m∗t as `̌m and
the lowest gridpoint above m∗t as `̂m. Then there will be a unique
interpolating polynomial that matches the level and slope of the
consumption function at these two points. Call this function
`̃ct(m).

Using indicator functions that are zero everywhere except for
specified intervals,

1Lo(m) = 1 if m ≤ `̌m

1Mid(m) = 1 if `̌m < m < `̂m

1Hi(m) = 1 if `̂m ≤ m

(27)

we can define a well-behaved approximating consumption
function

c̀t = 1Lo `̌ct + 1Mid `̃ct + 1Hi `̂ct. (28)

This just says that, for each interval, we use the approxima-
tion that is most appropriate. The function is continuous and
once-differentiable everywhere, and is therefore well behaved
for computational purposes.

We now construct an upper-bound value function implied for
a consumer whose spending behavior is consistent with the re-
fined upper-bound consumption rule.

For mt ≥ m∗t , this consumption rule is the same as before, so the
constructed upper-bound value function is also the same. How-
ever, for values mt < m∗t matters are slightly more complicated.

Start with the fact that at the cusp point,

v̄t(m∗t ) = u(c̄t(m∗t ))CT
t

= u(m̈∗t κ̄t)CT
t .

(29)

But for all mt,

v̄t(mt) = u(c̄t(mt)) + w(mt − c̄t(mt)), (30)

and we assume that for the consumer below the cusp point con-
sumption is given by κ̄tm̈t so for mt < m∗t

v̄t(mt) = u(κ̄tm̈t) + w((1 − κ̄t)m̈t), (31)

which is easy to compute because w(at) = βv̄t+1(atRt+1 + 1)
where v̄t is as defined above because a consumer who ends the
current period with assets exceeding the lower bound will not
expect to be constrained next period. (Recall again that we are
merely constructing an object that is guaranteed to be an upper
bound for the value that the ‘realist’ consumer will experience.)
At the gridpoints defined by the solution of the consumption
problem can then construct

Λ̄t(m) = ((1 − ρ)v̄t(m))1/(1−ρ) (32)

which yields the appropriate vector for constructing X̀ and Ὼ.
The rest of the procedure is analogous to that performed for the
consumption rule and is thus omitted for brevity.
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Figure 4: A Tighter Upper Bound

5.2 Hermite Interpolation

The numerical accuracy of the method of moderation depends
critically on the quality of function approximation between
gridpoints [27]. Our bracketing approach complements work
that bounds numerical errors in dynamic economic models [28].
Although linear interpolation that matches the level of ĉ at the
gridpoints is simple, Hermite interpolation [29, 30, 31] offers
a considerable advantage. By matching both the level and the
derivative of the ĉt function at the gridpoints, the consumption
rule derived from such interpolation numerically satisfies the
Euler equation at each gridpoint for which the problem has been
solved [32, 33].

The theoretical foundation for this approach rests on the moder-
ation ratio ω̄. This ratio captures how far the realist’s consump-
tion lies between the perfect-foresight upper bound and the pes-
simistic lower bound. Since its log-gap argument µmoves with
cash-on-hand relative to human wealth, the derivative measures
how quickly the realist closes this gap as available resources
shift:

ω̄µt =
m̈t(κt − ∂ĉ/∂mt)

κtḧt
. (33)

For numerical stability and interpretation on an unbounded
scale, we apply the transformation defined in (14) to the mod-
eration ratio. The derivative of this transformation is:

χµt =
ω̄µt

(ω̄t − 1)ω̄t
. (34)

This expression provides the slope data required for cubic Her-
mite interpolation.16 To recover the realist consumption func-
tion from the interpolated transformation, we use the relation-
ship established in (15). To recover the realist marginal propen-
sity to consume, we differentiate with respect to the transforma-
tion:

16For cubic Hermite interpolation of the transformed moderation
ratio, use node values from the transformation and node slopes χµ.
For improved shape preservation, a monotone cubic Hermite scheme
[34] can be used, where theoretical slopes serve as targets that may be
adjusted to enforce monotonicity.
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∂ĉt

∂mt
= κt

(
1 − ḧt

m̈t
χµt

)
. (35)

Since we have χµt from the Hermite interpolation, we can com-
pute the realist MPC directly from the interpolated transforma-
tion derivatives. This expression reveals that the realist MPC
is moderated away from κt by the transformation derivative,
weighted by the ratio of human wealth to excess market re-
sources. When uncertainty is low, the transformation derivative
approaches zero and the realist MPC approaches the optimistic
benchmark. Results showing identical MPCs under certain con-
ditions [35] help explain why simple linear bounds work so well
in many cases.

We can apply analogous techniques to the value function. Un-
der perfect foresight, consumption grows at a constant rate,
making CT

t constant. This implies that the inverse value func-
tion for the optimist has a constant slope with respect to cash-
on-hand:

Λ̄
m
t = (CT

t )1/(1−ρ)κt

= κ−ρ/(1−ρ)
t .

(36)

The result in (36) has important implications for the structure
of the value function.17

Consider the value analogue of the moderation ratio, which
compares the realist’s value to the optimist’s. The derivative
of this ratio with respect to the log-gap argument is:

Ω̂
µ
t =

m̈t(Λ̄m
t − Λ̂m

t )
ḧtΛ̄

m
t

(37)

where Λ̄m
t = κ

−ρ/(1−ρ)
t from (36) and Λ̂m

t is the derivative of the
realist’s inverse value function.

Applying the same transformation to the value-based moder-
ation ratio converts the bounded ratio into an unconstrained
slope:

X̂µt =
−Ω̂µt

Ω̂t(1 − Ω̂t)
. (38)

Since Λ̂ and v̂ are functional inverses, their derivatives are
linked by chain-rule relationships. The first derivative is:

Λ̂
m
t = ((1 − ρ)v̂t(mt))−1+1/(1−ρ) v̂m

t (mt). (39)

The first- and second-derivative connections are:

v̂m
t = u′(Λ̂t) Λ̂

m
t

v̂mm
t = u′′(Λ̂t) (Λ̂

m
t )2 + u′(Λ̂t) Λ̂

mm
t .

(40)

Moreover, if we use the double-derivative calculated in (40) to
produce a higher-order Hermite polynomial, our approximation

17This confirms that Λ̄t is linear in m and highlights the role of κt
in scaling marginal utility in the perfect-foresight benchmark. The
linearity property simplifies both theoretical analysis and numerical
implementation.

will also match the marginal propensity to consume at the grid-
points.18

These results provide the theoretical foundation for construct-
ing high-quality cubic Hermite interpolants that preserve both
the economic structure and numerical accuracy of the model
between gridpoints.

5.3 Stochastic Rate of Return

Thus far we have assumed that the interest factor is constant at
R. Extending the previous derivations to allow for a perfectly
forecastable time-varying interest factor Rt would be trivial.
Allowing for a stochastic interest factor is less trivial.

The easiest case is where the interest factor is i.i.d.,

log Rt+n ∼ N(r + π − σ2
r/2, σ

2
r) ∀ n > 0 (41)

because in this case Samuelson [36], Merton [37, 38] showed
that for a consumer without labor income (or with perfectly
forecastable labor income) the consumption function is linear,
with an MPC.19

κt = 1 −
(
βEt[R1−ρ

t+1 ]
)1/ρ

(42)

and in this case the previous analysis applies once we substitute
this MPC for the one that characterizes the perfect foresight
problem without rate-of-return risk. The more realistic case
where the interest factor has some serial correlation is more
complex, and thus left for future work.

In principle, this refinement should be combined with the previ-
ous one; further exposition of this combination is omitted here
because no new insights spring from the combination of the two
techniques.

6 Conclusion

The method proposed here is not universally applicable. For
example, the method cannot be used for problems for which
upper and lower bounds to the ‘true’ solution are not known.
But many problems do have obvious upper and lower bounds,
and in those cases (as in the consumption example used in the
paper), the method may result in substantial improvements in
accuracy and stability of solutions.

18This would guarantee that the consumption function generated
from the value function would match both the level of consumption
and the marginal propensity to consume at the gridpoints, making
the numerical differences between the newly constructed consump-
tion function and the highly accurate one constructed earlier negligible
within the grid.

19The Merton-Samuelson rule (for iid returns and no labor income,
or perfectly forecastable income) implies a linear consumption func-
tion c(m) = κm, where κ is given by Eq. (42). This result extends nat-
urally to our framework by substituting the stochastic-return MPC for
the perfect foresight MPC. At high wealth, the consumption function
becomes asymptotically linear as the precautionary motive vanishes
[39]. See Carroll [40] for a detailed derivation.
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