Skip to article content
Back to Article
Appendix to "The Method of Moderation"
Download Article

Appendix to "The Method of Moderation"

Abstract

This appendix provides detailed mathematical derivations and technical results supporting the Method of Moderation. Topics include: value function transformations and their relationship to the inverse value function; explicit formulas for minimal and maximal marginal propensities to consume; cusp point calculations for tighter upper bounds; Hermite interpolation slope formulas and MPC derivations; patience conditions ensuring well-defined solutions; and extensions to stochastic returns with explicit formulas for portfolio problems.

Appendix: Mathematical Details

Patience Conditions Details

The patience conditions listed in the main text have clear economic interpretations. The FVAC 0<βG1ρE[ψ1ρ]<10<\DiscFac\PermGroFac^{1-\CRRA}\Ex[\permShk^{1-\CRRA}]<1 ensures autarky (consuming zero forever) has finite disutility, guaranteeing the consumer values resources. The AIC Φ<1\AbsPatFac<1 prevents indefinite consumption deferral by ensuring the marginal utility of current consumption exceeds the discounted marginal utility of future consumption under certainty. The RIC Φ/R<1\AbsPatFac/\Rfree<1 ensures asset growth is slower than the patience-adjusted discount rate, preventing unbounded wealth accumulation. The GIC Φ/G<1\AbsPatFac/\PermGroFac<1 ensures consumption grows slower than permanent income, establishing a target wealth ratio. The FHWC G/R<1\PermGroFac/\Rfree<1 ensures the present value of future labor income is finite. Together, these conditions partition parameter space into regions with qualitatively different behavior: buffer-stock saving with a target wealth ratio (all conditions hold), perpetual borrowing (AIC fails), or unbounded wealth growth (GIC fails but RIC holds) Carroll, 1997Carroll, 2020Carroll & Shanker, 2024.

Human Wealth Formulas

The optimist’s human wealth (assuming ξt+n=1  n>0\tranShk_{t+n}=1~\forall~n>0) can be computed three ways: backward recursion hˉT=0\hNrmOpt_{T} = 0, hˉt=(G/R)(1+hˉt+1)\hNrmOpt_{t} = (\PermGroFac/\Rfree)(1 + \hNrmOpt_{t+1}); forward sum hˉt=n=1Tt(G/R)n\hNrmOpt_{t} = \sum_{n=1}^{T-t}(\PermGroFac/\Rfree)^{n}; or infinite-horizon hˉ=G/(RG)\hNrmOpt = \PermGroFac/(\Rfree-\PermGroFac) when R>G\Rfree>\PermGroFac. With G=1\PermGroFac=1, hˉ=1/(R1)\hNrmOpt = 1/(\Rfree-1).

The pessimist’s human wealth (assuming ξt+n=ξ  n>0\tranShk_{t+n}=\tranShkMin~\forall~n>0) follows similarly: backward recursion hT=0\hNrmPes_{T}=0, ht=(G/R)(ξ+ht+1)\hNrmPes_{t}=(\PermGroFac/\Rfree)(\tranShkMin + \hNrmPes_{t+1}); forward sum ht=ξn=1Tt(G/R)n\hNrmPes_{t}=\tranShkMin\sum_{n=1}^{T-t}(\PermGroFac/\Rfree)^{n}; or infinite-horizon h=ξG/(RG)\hNrmPes=\tranShkMin\PermGroFac/(\Rfree-\PermGroFac). When ξ=0\tranShkMin=0 (unemployment), h=0\hNrmPes=0.

Marginal Propensity to Consume Formulas

The minimal MPC (perfect foresight consumer with horizon TtT-t) has three forms Carroll, 2001: backward recursion κt=κt+1/(κt+1+Φ/R)\MPCmin_{t}=\MPCmin_{t+1}/(\MPCmin_{t+1}+\AbsPatFac/\Rfree) with κT=1\MPCmin_T=1; forward sum κt=(n=0Tt(Φ/R)n)1\MPCmin_{t}=(\sum_{n=0}^{T-t}(\AbsPatFac/\Rfree)^{n})^{-1}; or infinite-horizon κ=1Φ/R=1(Rβ)1/ρ/R\MPCmin=1-\AbsPatFac/\Rfree = 1-(\Rfree \DiscFac)^{1/\CRRA}/\Rfree.

The maximal MPC Carroll & Toche, 2009 satisfies backward recursion κˉt=11/ρ(Φ/R)(1+κˉt+1)\MPCmax_{t} = 1 - \WorstProb^{1/\CRRA} (\AbsPatFac/\Rfree) (1 + \MPCmax_{t+1}) with κˉT=1\MPCmax_T = 1; forward sum κˉt=11/ρ(Φ/R)n=0Tt(1/ρ(Φ/R))n\MPCmax_{t} = 1 - \WorstProb^{1/\CRRA} (\AbsPatFac/\Rfree) \sum_{n=0}^{T-t}\left(\WorstProb^{1/\CRRA} (\AbsPatFac/\Rfree)\right)^{n}; or infinite-horizon κˉ=11/ρ(Φ/R)\MPCmax = 1 - \WorstProb^{1/\CRRA} (\AbsPatFac/\Rfree).

Moderation Ratio Slope Formula

The moderation ratio slope needed for Hermite interpolation is derived from differentiating (8) from the main text. Using the chain rule:

ωμ=μ[c^(m+eμ)c(m+eμ)Δhκ].\frac{\partial \modRte}{\partial \logmNrmEx} = \frac{\partial}{\partial \logmNrmEx}\left[\frac{\cFuncReal(\mNrmMin+e^{\logmNrmEx})-\cFuncPes(\mNrmMin+e^{\logmNrmEx})}{\hNrmEx \MPCmin}\right].

Since eμ/μ=eμ=Δm\partial e^{\logmNrmEx}/\partial \logmNrmEx = e^{\logmNrmEx} = \mNrmEx and c\cFuncPes is linear with slope κ\MPCmin, this yields

ωμ=Δm(c^/mκ)κΔh.\frac{\partial \modRte}{\partial \logmNrmEx} = \frac{\mNrmEx (\partial \cFuncReal/\partial \mNrm - \MPCmin)}{\MPCmin \hNrmEx}.

Asymptotic Linearity and Extrapolation

Under the GIC, the logit-transformed moderation ratio χ(μ)\logitModRte(\logmNrmEx) is asymptotically linear with slope α=limμ+χμ0\asympSlope = \lim_{\logmNrmEx \to +\infty} \frac{\partial \logitModRte}{\partial \logmNrmEx} \geq 0 as μ+\logmNrmEx \to +\infty. This slope may equal zero in theory, but is strictly positive on finite grids. For practical implementation, extrapolate χ\logitModRte linearly using the positive boundary slope computed at the highest gridpoint. This linear extrapolation preserves ω(0,1)\modRte\in(0,1) and hence c<cˋ<cˉ\cFuncPes < \cFuncApprox < \cFuncOpt throughout the extrapolation domain, even if the theoretical limiting slope vanishes. The asymptotic linearity property is crucial because it allows the method to accurately represent the consumption function far beyond the range of gridpoints where the Euler equation was solved, without ever violating the theoretical bounds.

Cusp Point Calculation

The two upper bounds intersect at the cusp point m\mNrmCusp where

(Δm+Δh)κ=κˉΔmΔm=κΔhκˉκm=h+κ(hˉh)κˉκ,\begin{array}{rclcll} \bigl(\mNrmCuspEx + \hNrmEx\bigr)\,\MPCmin &= & \MPCmax\,\mNrmCuspEx & & \\ \mNrmCuspEx &= & \dfrac{\MPCmin\,\hNrmEx}{\MPCmax-\MPCmin} & & \\ \mNrmCusp &= & -\hNrmPes + \dfrac{\MPCmin\,\bigl(\hNrmOpt-\hNrmPes\bigr)}{\MPCmax-\MPCmin}, \end{array}

where Δmmm>0\mNrmCuspEx\equiv\mNrmCusp-\mNrmMin > 0 since κˉ>κ\MPCmax > \MPCmin. For m(m,m]\mNrm \in (\mNrmMin, \mNrmCusp], the tighter upper bound yields

Δmκ<c^(m+Δm)<κˉΔm0<c^(m+Δm)Δmκ<Δm(κˉκ)0<(c^(m+Δm)ΔmκΔm(κˉκ))<1.\begin{array}{rcl} \mNrmEx \MPCmin < & \cFuncReal(\mNrmMin+\mNrmEx) & < \MPCmax \mNrmEx \\ 0 < & \cFuncReal(\mNrmMin+\mNrmEx) - \mNrmEx \MPCmin & < \mNrmEx(\MPCmax- \MPCmin) \\ 0 < & \left(\frac{\cFuncReal(\mNrmMin+\mNrmEx) - \mNrmEx \MPCmin}{\mNrmEx(\MPCmax- \MPCmin)}\right) & < 1. \end{array}

We define the low-region moderation ratio as

ωˇˋ(μ)=c^(m+eμ)eμκκˉκ,\modRteLoTightUpBd(\logmNrmEx) = \frac{\cFuncReal(\mNrmMin+e^{\logmNrmEx})e^{-\logmNrmEx}-\MPCmin}{\MPCmax-\MPCmin},

which measures how far consumption per unit of wealth exceeds the optimist’s MPC relative to the maximum possible excess.

Hermite Interpolation: Slope Derivations

The logit transformation slope follows from the chain rule Santos, 2000Judd et al., 2017:

χμ=μ[logωlog(1ω)]=ω/μω(1ω)\frac{\partial \logitModRte}{\partial \logmNrmEx} = \frac{\partial}{\partial \logmNrmEx}\left[\log\modRte - \log(1-\modRte)\right] = \frac{\modRteMu}{\modRte(1 - \modRte)}

where ω/μ\modRteMu is from (2). For monotone cubic Hermite schemes Fritsch & Carlson, 1980Fritsch & Butland, 1984Boor, 2001, theoretical slopes may be adjusted to enforce monotonicity Hyman, 1983. The Fritsch-Carlson algorithm modifies slopes at local extrema, while Fritsch-Butland uses harmonic mean weighting. Both preserve the shape-preserving property essential for consumption functions that must be strictly increasing.

The MPC weight derivation starts from differentiating (10) from the main text with respect to m\mNrm:

c^m=cm+m[ωΔhκ].\frac{\partial \cFuncReal}{\partial \mNrm} = \frac{\partial \cFuncPes}{\partial \mNrm} + \frac{\partial}{\partial \mNrm}\left[\modRte \hNrmEx \MPCmin\right].

Since c\cFuncPes has constant MPC and Δh\hNrmEx is constant, c/m=κ\partial \cFuncPes/\partial \mNrm = \MPCmin and ω/m=(ω/μ)(μ/Δm)(Δm/m)=ω/μ(1/Δm)1\partial \modRte/\partial \mNrm = (\partial \modRte/\partial \logmNrmEx) \cdot (\partial \logmNrmEx/\partial \mNrmEx) \cdot (\partial \mNrmEx/\partial \mNrm) = \modRteMu \cdot (1/\mNrmEx) \cdot 1. This yields

c^m=κ+ω/μΔhκΔm=κ(1+ΔhΔmω/μ).\frac{\partial \cFuncReal}{\partial \mNrm} = \MPCmin + \frac{\modRteMu \hNrmEx \MPCmin}{\mNrmEx} = \MPCmin\left(1 + \frac{\hNrmEx}{\mNrmEx}\modRteMu\right).

Factoring as a weighted average between κ\MPCmin and κˉ\MPCmax gives (13) from the main text, with weight

η=κκˉκΔhΔmω/μ.\MPCmod = \frac{\MPCmin}{\MPCmax-\MPCmin} \cdot \frac{\hNrmEx}{\mNrmEx} \cdot \modRteMu.

Value Function Derivation

Under perfect foresight, consumption grows at constant rate Φ\AbsPatFac: ct+n=ctΦn\cLvl_{t+n}=\cLvl_{t}\AbsPatFac^{n}. The present discounted value of consumption satisfies PDVtT(c)=n=0TtβnctΦn=ctn=0Tt(Φ/R)n\PDV_{t}^{T}(\cLvl)=\sum_{n=0}^{T-t}\DiscFac^{n}\cLvl_{t}\AbsPatFac^{n}=\cLvl_{t}\sum_{n=0}^{T-t}(\AbsPatFac/\Rfree)^{n}, where we use βΦ1ρ=Φ/R\DiscFac\AbsPatFac^{1-\CRRA}=\AbsPatFac/\Rfree. Dividing by consumption yields the PDV-to-consumption ratio CtT=PDVtT(c)/ct=n=0Tt(Φ/R)n=κt1\PDVCoverc_{t}^{T}=\PDV_{t}^{T}(\cLvl)/\cLvl_{t}=\sum_{n=0}^{T-t}(\AbsPatFac/\Rfree)^{n}=\MPCmin_{t}^{-1}, which is unchanged for normalized variables. This yields the key identity C=κ1\PDVCoverc = \MPCmin^{-1} in the infinite-horizon limit, connecting the PDV-to-consumption ratio to the minimal MPC.

The optimist’s value function satisfies

vˉT1(mT1)u(cT1)+βu(cT)=u(cT1)(1+βΦ1ρ)=u(cT1)(1+Φ/R)=u(cT1)CT1T\begin{aligned} \vFuncOpt_{T-1}(\mNrm_{T-1}) &\equiv \uFunc(\cNrm_{T-1})+\DiscFac \uFunc(\cNrm_{T}) \\ &= \uFunc(\cNrm_{T-1})\left(1+\DiscFac \AbsPatFac^{1-\CRRA}\right) \\ &= \uFunc(\cNrm_{T-1})\left(1+\AbsPatFac/\Rfree\right) \\ &= \uFunc(\cNrm_{T-1})\PDVCoverc_{T-1}^{T} \end{aligned}

The general expression becomes

vˉ(m)=u(cˉ(m))C=u(cˉ(m))κ1=u((Δm+Δh)κ)κ1=[(Δm+Δh)1ρ/(1ρ)][κ1ρκ1]=u(Δm+Δh)κρ.\begin{aligned} \vFuncOpt(\mNrm) &= \uFunc(\cFuncOpt(\mNrm))\PDVCoverc \\ &= \uFunc(\cFuncOpt(\mNrm))\MPCmin^{-1} \\ &= \uFunc((\mNrmEx+\hNrmEx)\MPCmin) \MPCmin^{-1} \\ &= \left[(\mNrmEx+\hNrmEx)^{1-\CRRA}/(1-\CRRA)\right] \cdot \left[\MPCmin^{1-\CRRA} \cdot \MPCmin^{-1}\right] \\ &= \uFunc(\mNrmEx+\hNrmEx)\MPCmin^{-\CRRA}. \end{aligned}

This can be transformed as

Λˉ((1ρ)vˉ)1/(1ρ)=cC1/(1ρ)=(Δm+Δh)κρ/(1ρ).\begin{aligned} \vInvOpt &\equiv \left((1-\CRRA)\vFuncOpt\right)^{1/(1-\CRRA)} \\ &= \cNrm\,\PDVCoverc^{1/(1-\CRRA)} \\ &= (\mNrmEx+\hNrmEx)\MPCmin^{-\CRRA/(1-\CRRA)}. \end{aligned}

For the realist’s problem, we define Λ^=((1ρ)v^(m))1/(1ρ)\vInvReal = \left((1-\CRRA)\vFuncReal(\mNrm)\right)^{1/(1-\CRRA)}. Using the bounds Λ<Λ^<Λˉ\vInvPes < \vInvReal < \vInvOpt, we define

Ω^(μ)=(Λ^(m+eμ)Λ(m+eμ)ΔhκC1/(1ρ))\valModRteReal(\logmNrmEx) = \left(\frac{\vInvReal(\mNrmMin+e^{\logmNrmEx})-\vInvPes(\mNrmMin+e^{\logmNrmEx})}{\hNrmEx \MPCmin \,\PDVCoverc^{1/(1-\CRRA)}}\right)

and:

X^(μ)=log(Ω^(μ)1Ω^(μ))=log(Ω^(μ))log(1Ω^(μ))\begin{aligned} \logitValModRteReal(\logmNrmEx) &= \log \left(\frac{\valModRteReal(\logmNrmEx)}{1-\valModRteReal(\logmNrmEx)}\right) \\ &= \log(\valModRteReal(\logmNrmEx)) - \log(1-\valModRteReal(\logmNrmEx)) \end{aligned}

Inverting these approximations yields

Λ^=Λ+(11+exp(X^))=Ω^ΔhκC1/(1ρ)\vInvReal = \vInvPes+\overbrace{\left(\frac{1}{1+\exp(-\logitValModRteReal)}\right)}^{=\valModRteReal} \hNrmEx \MPCmin \,\PDVCoverc^{1/(1-\CRRA) }

from which the value function approximation is v^=u(Λ^)\vFuncReal = \uFunc(\vInvReal).

Stochastic Returns: MGF Derivation

The moment generating function (MGF) for lognormal returns provides the key formula. For logRN(μ,σ2)\log \Risky \sim \Nrml(\mu, \sigma^2), the MGF is E[esX]=exp(μs+σ2s2/2)\Ex[e^{sX}] = \exp(\mu s + \sigma^2 s^2/2) where X=logRX = \log \Risky. Setting s=1ρs = 1-\CRRA and μ=r+πσr2/2\mu = r + \equityPrem - \std_{\risky}^2/2 yields

E[R1ρ]=exp((1ρ)(r+πσr22)+(1ρ)2σr22).\Ex[\Risky^{1-\CRRA}] = \exp\left((1-\CRRA)\left(r+\equityPrem - \frac{\std_{\risky}^2}{2}\right) + \frac{(1-\CRRA)^2\std_{\risky}^2}{2}\right).

Simplifying the variance terms: (1ρ)2σr2/2(1ρ)σr2/2=(1ρ)[(1ρ)1]σr2/2=(1ρ)(ρ)σr2/2(1-\CRRA)^2\std_{\risky}^2/2 - (1-\CRRA)\std_{\risky}^2/2 = (1-\CRRA)[(1-\CRRA)-1]\std_{\risky}^2/2 = (1-\CRRA)(-\CRRA)\std_{\risky}^2/2, giving the final form

E[R1ρ]=exp((1ρ)(r+π)+(1ρ)(12ρ)σr2/2).\Ex[\Risky^{1-\CRRA}] = \exp((1-\CRRA)(r+\equityPrem) + (1-\CRRA)(1-2\CRRA)\std_{\risky}^2/2).

For serially correlated returns, the return state becomes an additional state variable, requiring two-dimensional interpolation of the moderation ratio.

Shock Discretization

Continuous shock distributions require discretization. The Tauchen method Tauchen, 1986 constructs a Markov chain by dividing the state space into bins. The Tauchen-Hussey method Tauchen & Hussey, 1991 uses Gaussian quadrature, often requiring fewer states for comparable accuracy. For unemployment shocks, assign probability \WorstProb to zero income and (1)(1-\WorstProb) across positive realizations. Choose gridpoints and shock points via convergence analysis. The method of moderation is efficient because the transformed moderation ratio is better-behaved than consumption, requiring fewer gridpoints.

References
  1. Carroll, C. D. (1997). Buffer-Stock Saving and the Life Cycle/Permanent Income Hypothesis. Quarterly Journal of Economics, 112(1), 1–55. 10.1162/003355397555109
  2. Carroll, C. D. (2020). Solving microeconomic dynamic stochastic optimization problems [Techreport]. Johns Hopkins University. https://www.econ2.jhu.edu/people/ccarroll/SolvingMicroDSOPs.pdf
  3. Carroll, C. D., & Shanker, A. (2024). Theoretical Foundations of Buffer Stock Saving (Revise and Resubmit, Quantitative Economics). Johns Hopkins University. https://llorracc.github.io/BufferStockTheory/BufferStockTheory.pdf
  4. Carroll, C. D. (2001). Precautionary Saving and the Marginal Propensity to Consume (Working Paper No. 8233). NBER.
  5. Carroll, C. D., & Toche, P. (2009). A Tractable Model of Buffer Stock Saving. Social Science Research Network. 10.3386/w15265
  6. Santos, M. S. (2000). Accuracy of Numerical Solutions Using the Euler Equation Residuals. Econometrica, 68(6), 1377–1402. 10.1111/1468-0262.00165
  7. Judd, K. L., Maliar, L., & Maliar, S. (2017). Lower Bounds on Approximation Errors to Numerical Solutions of Dynamic Economic Models. Econometrica, 85(3), 991–1020. 10.3982/ecta12791
  8. Fritsch, F. N., & Carlson, R. E. (1980). Monotone Piecewise Cubic Interpolation. SIAM Journal on Numerical Analysis, 17(2), 238–246. 10.1137/0717021
  9. Fritsch, F. N., & Butland, J. (1984). A Method for Constructing Local Monotone Piecewise Cubic Interpolants. SIAM Journal on Scientific and Statistical Computing, 5(2), 300–304. 10.1137/0905021
  10. de Boor, C. (2001). A Practical Guide to Splines (Revised). Springer.
  11. Hyman, J. M. (1983). Accurate Monotonicity-Preserving Cubic Interpolation. SIAM Journal on Scientific and Statistical Computing, 4(4), 645–654. 10.1137/0904045
  12. Tauchen, G. (1986). Finite State Markov-Chain Approximations to Univariate and Vector Autoregressions. Economics Letters, 20(2), 177–181. 10.1016/0165-1765(86)90168-0
  13. Tauchen, G., & Hussey, R. (1991). Quadrature-Based Methods for Obtaining Approximate Solutions to Nonlinear Asset Pricing Models. Econometrica, 59(2), 371–396. 10.2307/2938261
Method of Moderation
Method of Moderation
Method of Moderation
The Method of Moderation: Illustrative Notebook